We study the efficient approximation of integrals involving Hankel functions of the first kind which arise in wave scattering problems on straight or convex polygonal boundaries. Filon methods have proved to be an effective way to approximate many types of highly oscillatory integrals, however finding such methods for integrals that involve non-linear oscillators and frequency-dependent singularities is subject to a significant amount of ongoing research. In this work, we demonstrate how Filon methods can be constructed for a class of integrals involving a Hankel function of the first kind. These methods allow the numerical approximation of the integral at uniform cost even when the frequency $omega$ is large. In constructing these Filon methods we also provide a stable algorithm for computing the Chebyshev moments of the integral based on duality to spectral methods applied to a version of Bessels equation. Our design for this algorithm has significant potential for further generalisations that would allow Filon methods to be constructed for a wide range of integrals involving special functions. These new extended Filon methods combine many favourable properties, including robustness in regard to the regularity of the integrand and fast approximation for large frequencies. As a consequence, they are of specific relevance to applications in wave scattering, and we show how they may be used in practice to assemble collocation matrices for wavelet-based collocation methods and for hybrid oscillatory approximation spaces in high-frequency wave scattering problems on convex polygonal shapes.