We propose an ansatz for OPE coefficients in chaotic conformal field theories which generalizes the Eigenstate Thermalization Hypothesis and describes any OPE coefficient involving heavy operators as a random variable with a Gaussian distribution. In two dimensions this ansatz enables us to compute higher moments of the OPE coefficients and analyse two and four-point functions of OPE coefficients, which we relate to genus-2 partition functions and their squares. We compare the results of our ansatz to solutions of Einstein gravity in AdS$_3$, including a Euclidean wormhole that connects two genus-2 surfaces. Our ansatz reproduces the non-perturbative correction of the wormhole, giving it a physical interpretation in terms of OPE statistics. We propose that calculations performed within the semi-classical low-energy gravitational theory are only sensitive to the random nature of OPE coefficients, which explains the apparent lack of factorization in products of partition functions.