Do you want to publish a course? Click here

Noisy One-bit Compressed Sensing with Side-Information

82   0   0.0 ( 0 )
 Added by Swatantra Kafle
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before quantization and sign-flip error after quantization. A generalized approximate message passing-based method for signal reconstruction from noisy one-bit compressed measurements is proposed, which is then extended for the case where the receiver has access to a signal that aids signal reconstruction, i.e., side-information. Two different scenarios of side-information are considered-a) side-information consisting of support information only, and b) side information consisting of support and amplitude information. SI is either a noisy version of the signal or a noisy estimate of the support of the signal. We develop reconstruction algorithms from one-bit measurements using noisy SI available at the receiver. Laplacian distribution and Bernoulli distribution are used to model the two types of noises which, when applied to the signal and the support, yields the SI for the above two cases, respectively. The Expectation-Maximization algorithm is used to estimate the noise parameters using noisy one-bit compressed measurements and the SI. We show that one-bit compressed measurement-based signal reconstruction is quite sensitive to noise, and the reconstruction performance can be significantly improved by exploiting available side-information at the receiver.



rate research

Read More

68 - Vasileios Nakos 2017
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximately k-sparse, this problem is called one-bit compressed sensing and has received a fair amount of attention the last decade. In this paper we obtain the first scheme that achieves almost optimal measurements and sublinear decoding time for one-bit compressed sensing in the non-uniform case. For a large range of parameters, we improve the state of the art in both the number of measurements and the decoding time.
146 - Jie Shen 2020
This paper concerns the problem of 1-bit compressed sensing, where the goal is to estimate a sparse signal from a few of its binary measurements. We study a non-convex sparsity-constrained program and present a novel and concise analysis that moves away from the widely used notion of Gaussian width. We show that with high probability a simple algorithm is guaranteed to produce an accurate approximation to the normalized signal of interest under the $ell_2$-metric. On top of that, we establish an ensemble of new results that address norm estimation, support recovery, and model misspecification. On the computational side, it is shown that the non-convex program can be solved via one-step hard thresholding which is dramatically efficient in terms of time complexity and memory footprint. On the statistical side, it is shown that our estimator enjoys a near-optimal error rate under standard conditions. The theoretical results are substantiated by numerical experiments.
In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compressed sensing (CS)-based CSI feedback method assisted by superimposed coding (SC) is proposed. Using 1-bit CS and SC techniques, the compressed support-set information and downlink CSI (DL-CSI) are superimposed on the uplink user data sequence (UL-US) and fed back to base station (BS). Compared with the SC-based feedback, the analysis and simulation results show that the UL-USs bit error ratio (BER) and the DL-CSIs accuracy can be improved in the proposed method, without using the exclusive uplink bandwidth resources to feed DL-CSI back to BS.
We present a novel scheme allowing for 2D target localization using highly quantized 1-bit measurements from a Frequency Modulated Continuous Wave (FMCW) radar with two receiving antennas. Quantization of radar signals introduces localization artifacts, we remove this limitation by inserting a dithering on the unquantized observations. We then adapt the projected back projection algorithm to estimate both the range and angle of targets from the dithered quantized radar observations, with provably decaying reconstruction error when the number of observations increases. Simulations are performed to highlight the accuracy of the dithered scheme in noiseless conditions when compared to the non-dithered and full 32-bit resolution under severe bit-rate reduction. Finally, measurements are performed using a radar sensor to demonstrate the effectiveness and performances of the proposed quantized dithered scheme in real conditions.
108 - Biao Sun , Hui Feng , Xinxin Xu 2016
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe performance degradation. In this study, a novel algorithm, termed HISTORY, is proposed. It consists of Hamming support detection and coefficients recovery. The HISTORY algorithm has high recovery accuracy and is robust to strong measurement noise. Numerical results are provided to demonstrate the effectiveness and superiority of the proposed algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا