Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-Gaussian implementation with Gottesman-Kitaev-Preskill code


Abstract in English

Scalability of flying photonic quantum systems in generating quantum entanglement offers a potential for implementing large-scale fault-tolerant quantum computation, especially by means of measurement-based quantum computation (MBQC). However, existing protocols for MBQC inevitably impose a polynomial overhead cost in implementing quantum computation due to geometrical constraints of entanglement structures used in the protocols, and the polynomial overhead potentially cancels out useful polynomial speedups in quantum computation. To implement quantum computation without this cancellation, we construct a protocol for photonic MBQC that achieves as low as poly-logarithmic overhead, by introducing an entanglement structure for low-overhead qubit permutation. Based on this protocol, we design a fault-tolerant photonic MBQC protocol that can be performed by experimentally tractable homodyne detection and Gaussian entangling operations combined with the Gottesman-Kitaev-Preskill (GKP) quantum error-correcting code, which we concatenate with the $7$-qubit code. Our fault-tolerant protocol achieves the threshold $7.8$ dB in terms of the squeezing level of the GKP code, outperforming $8.3$ dB of the best existing protocol for fault-tolerant quantum computation with the GKP surface code. Thus, bridging a gap between theoretical progress on MBQC and photonic experiments towards implementing MBQC, our results open a new way towards realization of a large class of quantum speedups including those polynomial.

Download