Do you want to publish a course? Click here

Thermoelectricity of near-resonant tunnel junctions and their near-Carnot efficiency

171   0   0.0 ( 0 )
 Added by Heiko B. Weber
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The resonant tunneling model is the simplest model for describing electronic transport through nanoscale objects like individual molecules. A complete understanding includes not only charge transport but also thermal transport and their intricate interplay. Key linear response observables are the electrical conductance G and the Seebeck coefficient S. Here we present experiments on unspecified resonant tunnel junctions and molecular junctions that uncover correlations between $G$ and $S$, in particular rigid boundaries for $S(G)$. We find that these correlations can be consistently understood by the single-level resonant tunneling model, with excellent match to experiments. In this framework, measuring $I(V)$ and $S$ for a given junction provides access to the full thermoelectric characterization of the electronic system. A remarkable result is that without targeted chemical design, molecular junctions can expose thermoelectric conversion efficiencies which are close to the Carnot limit. This insight allows to provide design rules for optimized thermoelectric efficiency.



rate research

Read More

Electron tunneling is associated with light emission. In order to elucidate its generating mechanism, we provide a novel experimental ansatz that employs fixed-distance epitaxial graphene as metallic electrodes. In contrast to previous experiments, this permits an unobscured light spread from the tunnel junction, enabling both a reliable calibration of the visible to infrared emission spectrum and a detailed analysis of the dependence of the parameters involved. In an open, non-resonant geometry, the emitted light is perfectly characterized by a Planck spectrum. In an electromagnetically resonant environment, resonant radiation is added to the thermal spectrum, both being strictly proportional in intensity. In full agreement with a simple heat conduction model, we provide evidence that in both cases the light emission stems from a hot electronic subsystem in interaction with its linear electromagnetic environment. These very clear results should resolve any ambiguity about the mechanism of light emission in nano contacts.
We report on the low frequency (LF) noise measurements in magnetic tunnel junctions (MTJs) below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlO$_{x}$/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlO$_{x}$-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN) is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.
We propose energy band engineering to enhance tunneling electroresistance (TER) in ferroelectric tunnel junctions (FTJs). We predict that an ultrathin dielectric layer with a smaller band gap, embedded into a ferroelectric barrier layer, acts as a switch controlling high and low conductance states of an FTJ depending on polarization orientation. Using first-principles modeling based on density functional theory, we investigate this phenomenon for a prototypical SrRuO3/BaTiO3/SrRuO3 FTJ with a BaSnO3 monolayer embedded in the BaTiO3 barrier. We show that in such a composite-barrier FTJ, ferroelectric polarization of BaTiO3 shifts the conduction band minimum of the BaSnO3 monolayer above or below the Fermi energy depending on polarization orientation. The resulting switching between direct and resonant tunneling leads to a TER effect with a giant ON/OFF conductance ratio. The proposed resonant band engineering of FTJs can serve as a viable tool to enhance their performance useful for device application.
We present a computational study of the adhesive and structural properties of the Al/Al2O3 interfaces as building blocks of the Metal-Insulator-Metal (MIM) tunnel devices, where electron transport is accomplished via tunnelling mechanism through the sandwiched insulating barrier. The main goal of this paper is to understand, on the atomic scale, the role of the geometrical details in the formation of the tunnel barrier profiles. To provide reliable results, we carefully assess the accuracy of the traditional methods used to examine Al/Al2O3 interfaces. These are the most widely employed exchange-correlation functionals, LDA, PBE and PW91, the Universal Binding Energy Relation (UBER) for predicting equilibrium interfacial distances and adhesion energies, and the ideal work of separation as a measure of junction stability. Finally, we perform a detailed analysis of the atomic and interplanar relaxations in each junction. Our results imply that the structural irregularities on the surface of the Al film have a significant contribution to lowering the tunnel barrier height, while interplanar relaxations in the Al film, away from the immediate interface do not have a notable impact on the tunnelling properties. On the other hand, up to 5-7 layers of Al2O3 may be involved in shaping the tunnel barriers. Interplanar relaxations of these layers depend on the geometry of the interface and may result in the net contraction by 13% relative to the corresponding thickness in the bulk oxide. This is a significant amount as the tunnelling probability depends exponentially on the barrier width.
Classically, the power generated by an ideal thermal machine cannot be larger than the Carnot limit. This profound result is rooted in the second law of thermodynamics. A hot question is whether this bound is still valid for microengines operating far from equilibrium. Here, we demonstrate that a quantum chiral conductor driven by AC voltage can indeed work with efficiencies much larger than the Carnot bound. The system also extracts work from common temperature baths, violating Kelvin-Planck statement. Nonetheless, with the proper definition, entropy production is always positive and the second law is preserved. The crucial ingredients to obtain efficiencies beyond the Carnot limit are: i) irreversible entropy production by the photoassisted excitation processes due to the AC field and ii) absence of power injection thanks to chirality. Our results are relevant in view of recent developments that use small conductors to test the fundamental limits of thermodynamic engines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا