Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces


Abstract in English

We prove and explore a family of identities relating lengths of curves and orthogeodesics of hyperbolic surfaces. These identities hold over a large space of metrics including ones with hyperbolic cone points, and in particular, show how to extend a result of the first author to surfaces with cusps. One of the main ingredients in the approach is a partition of the set of orthogeodesics into sets depending on their dynamical behavior, which can be understood geometrically by relating them to geodesics on orbifold surfaces. These orbifold surfaces turn out to be exactly on the boundary of the space in which the underlying identity holds.

Download