Do you want to publish a course? Click here

Approximate learning of high dimensional Bayesian network structures via pruning of Candidate Parent Sets

275   0   0.0 ( 0 )
 Added by Zhigao Guo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Score-based algorithms that learn Bayesian Network (BN) structures provide solutions ranging from different levels of approximate learning to exact learning. Approximate solutions exist because exact learning is generally not applicable to networks of moderate or higher complexity. In general, approximate solutions tend to sacrifice accuracy for speed, where the aim is to minimise the loss in accuracy and maximise the gain in speed. While some approximate algorithms are optimised to handle thousands of variables, these algorithms may still be unable to learn such high dimensional structures. Some of the most efficient score-based algorithms cast the structure learning problem as a combinatorial optimisation of candidate parent sets. This paper explores a strategy towards pruning the size of candidate parent sets, aimed at high dimensionality problems. The results illustrate how different levels of pruning affect the learning speed relative to the loss in accuracy in terms of model fitting, and show that aggressive pruning may be required to produce approximate solutions for high complexity problems.



rate research

Read More

Social network structure is one of the key determinants of human language evolution. Previous work has shown that the network of social interactions shapes decentralized learning in human groups, leading to the emergence of different kinds of communicative conventions. We examined the effects of social network organization on the properties of communication systems emerging in decentralized, multi-agent reinforcement learning communities. We found that the global connectivity of a social network drives the convergence of populations on shared and symmetric communication systems, preventing the agents from forming many local dialects. Moreover, the agents degree is inversely related to the consistency of its use of communicative conventions. These results show the importance of the basic properties of social network structure on reinforcement communication learning and suggest a new interpretation of findings on human convergence on word conventions.
Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary statistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to construct effective summary statistics. In this paper we explore the possibility of automating the process of constructing summary statistics by training deep neural networks to predict the parameters from artificially generated data: the resulting summary statistics are approximately posterior means of the parameters. With minimal model-specific tuning, our method constructs summary statistics for the Ising model and the moving-average model, which match or exceed theoretically-motivated summary statistics in terms of the accuracies of the resulting posteriors.
125 - Jireh Huang , Qing Zhou 2021
We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-conquer strategy, $p$-value adjacency thresholding (PATH) effectively accomplishes parameter tuning with a single execution, and hybrid greedy initialization (HGI) maximally utilizes constraint-based information to obtain a high-scoring and well-performing initial graph for greedy search. We establish structure learning consistency of our algorithms in the large-sample limit, and empirically validate our methods individually and collectively through extensive numerical comparisons. The combined merits of pPC and PATH achieve significant computational reductions compared to the PC algorithm without sacrificing the accuracy of estimated structures, and our generally applicable HGI strategy reliably improves the estimation structural accuracy of popular hybrid algorithms with negligible additional computational expense. Our empirical results demonstrate the superior empirical performance of pHGS against many state-of-the-art structure learning algorithms.
In applications like computer aided design, geometric models are often represented numerically as polynomial splines or NURBS, even when they originate from primitive geometry. For purposes such as redesign and isogeometric analysis, it is of interest to extract information about the underlying geometry through reverse engineering. In this work we develop a novel method to determine these primitive shapes by combining clustering analysis with approximate implicitization. The proposed method is automatic and can recover algebraic hypersurfaces of any degree in any dimension. In exact arithmetic, the algorithm returns exact results. All the required parameters, such as the implicit degree of the patches and the number of clusters of the model, are inferred using numerical approaches in order to obtain an algorithm that requires as little manual input as possible. The effectiveness, efficiency and robustness of the method are shown both in a theoretical analysis and in numerical examples implemented in Python.
We present a new approach for learning the structure of a treewidth-bounded Bayesian Network (BN). The key to our approach is applying an exact method (based on MaxSAT) locally, to improve the score of a heuristically computed BN. This approach allows us to scale the power of exact methods -- so far only applicable to BNs with several dozens of random variables -- to large BNs with several thousands of random variables. Our experiments show that our method improves the score of BNs provided by state-of-the-art heuristic methods, often significantly.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا