Do you want to publish a course? Click here

Novel sum rules for the three-point sector of QCD

105   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term of the gluon propagator. The exact solutions of these equations exhibit poles at the origin, which are incompatible with the physical answer, known to diverge only logarithmically; their elimination hinges on the validity of two integral conditions that we denominate ``asymmetric and ``symmetric sum rules, depending on the kinematics employed in their derivation. The corresponding integrands contain components of the three-gluon vertex and the ghost-gluon kernel, whose dynamics are constrained when the sum rules are imposed. For the numerical treatment we single out the asymmetric sum rule, given that its support stems predominantly from low and intermediate energy regimes of the defining integral, which are physically more interesting. Adopting a combined approach based on Schwinger-Dyson equations and lattice simulations, we demonstrate how the sum rule clearly favors the suppression of an effective form factor entering in the definition of its kernel. The results of the present work offer an additional vantage point into the rich and complex structure of the three-point sector of QCD.



rate research

Read More

The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing to analyse the Weinberg sum rules, and predict the dimuon spectrum in heavy ion collisions in the region of the rho-meson. Also in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
131 - S. Rodini 2020
Different decompositions of the nucleon mass, in terms of the masses and energies of the underlying constituents, have been proposed in the literature. We explore the corresponding sum rules in quantum electrodynamics for an electron at one-loop order in perturbation theory. To this end we compute the form factors of the energy-momentum tensor, by paying particular attention to the renormalization of ultraviolet divergences, operator mixing and scheme dependence. We clarify the expressions of all the proposed sum rules in the electron rest frame in terms of renormalized operators. Furthermore, we consider the same sum rules in a moving frame, where they become energy decompositions. Finally, we discuss some implications of our study on the mass sum rules for the nucleon.
64 - L. Ya. Glozman 2019
While the QCD Lagrangian as the whole is only chirally symmetric, its electric part has larger chiral-spin SU(2)_{CS} and SU(2N_F) symmetries. This allows separation of the electric and magnetic interactions in a given reference frame. Artificial truncation of the near-zero modes of the Dirac operator results in the emergence of the SU(2)_{CS} and SU(2N_F) symmetries in hadron spectrum. This implies that while the confining electric interaction is distributed among all modes of the Dirac operator, the magnetic interaction is located at least predominantly in the near-zero modes. Given this observation one could anticipate that above the pseudocritical temperature, where the near-zero modes of the Dirac operator are suppressed, QCD is SU(2)_{CS} and SU(2N_F) symmetric, which means absence of deconfinement in this regime. Solution of the N_F=2 QCD on the lattice with a chirally symmetric Dirac operator reveals that indeed in the interval Tc - 3Tc QCD is approximately SU(2)_{CS} and SU(2N_F) symmetric which implies that degrees of freedom are chirally symmetric quarks bound by the chromoelectric field into color-singlet objects without the chromomagnetic effects. This regime is referred to as a Stringy Fluid. At larger temperatures this emergent symmetry smoothly disappears and QCD approaches the Quark-Gluon Plasma regime with quasifree quarks. The Hadron Gas, the Stringy Fluid and the Quark-Gluon Plasma differ by symmetries, degrees of freedom and properties.
We briefly report the modern status of heavy quark sum rules (HQSR) based on stability criteria by emphasizing the recent progresses for determining the QCD parameters (alpha_s, m_{c,b} and gluon condensates)where their correlations have been taken into account. The results: alpha_s(M_Z)=0.1181(16)(3), m_c(m_c)=1286(16) MeV, m_b(m_b)=4202(7) MeV,<alpha_s G^2> = (6.49+-0.35)10^-2 GeV^4, < g^3 G^3 >= (8.2+-1.0) GeV^2 <alpha_s G^2> and the ones from recent light quark sum rules are summarized in Table 2. One can notice that the SVZ value of <alpha_s G^2> has been underestimated by a factor 1.6, <g^3 G^3> is much bigger than the instanton model estimate, while the four-quark condensate which mixes under renormalization is incompatible with the vacuum saturation which is phenomenologically violated by a factor (2~4). The uses of HQSR for molecules and tetraquarks states are commented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا