Do you want to publish a course? Click here

Constraining the lensing of binary black holes from their stochastic background

70   0   0.0 ( 0 )
 Added by Riccardo Buscicchio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves (GWs) are subject to gravitational lensing in the same way as electromagnetic radiation. However, to date, no unequivocal observation of a lensed GW transient has been reported. Independently, GW observatories continue to search for the stochastic GW signal which is produced by many transient events at high redshift. We exploit a surprising connection between the lensing of individual transients and limits to the background radiation produced by the unresolved population of binary back hole mergers: we show that it constrains the fraction of individually resolvable lensed binary black holes to less than $sim 4times 10^{-5}$ at present sensitivity. We clarify the interpretation of existing, low redshift GW observations (obtained assuming no lensing) in terms of their apparent lensed redshifts and masses and explore constraints from GW observatories at future sensitivity. Based on our results, recent claims of observations of lensed events are statistically disfavoured.



rate research

Read More

A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density ($Omega_{GW}$) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on $Omega_{GW}$ for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.
We show how LIGO is expected to detect coalescing binary black holes at $z>1$, that are lensed by the intervening galaxy population. Gravitational magnification, $mu$, strengthens gravitational wave signals by $sqrt{mu}$, without altering their frequencies, which if unrecognised leads to an underestimate of the event redshift and hence an overestimate of the binary mass. High magnifications can be reached for coalescing binaries because the region of intense gravitational wave emission during coalescence is so small ($sim$100km), permitting very close projections between lensing caustics and gravitational-wave events. Our simulations incorporate accurate waveforms convolved with the LIGO power spectral density. Importantly, we include the detection dependence on sky position and orbital orientation, which for the LIGO configuration translates into a wide spread in observed redshifts and chirp masses. Currently we estimate a detectable rate of lensed events rateEarly{}, that rises to rateDesign{}, at LIGOs design sensitivity limit, depending on the high redshift rate of black hole coalescence.
110 - Yi-Fu Cai , Chao Chen , Xi Tong 2019
As potential candidates of dark matter, primordial black holes (PBHs) are within the core scopes of various astronomical observations. In light of the explosive development of gravitational wave (GW) and radio astronomy, we thoroughly analyze a stochastic background of cosmological GWs, induced by over large primordial density perturbations, with several spikes that was inspired by the sound speed resonance effect and can predict a particular pattern on the mass spectrum of PBHs. With a specific mechanicsm for PBHs formation, we for the first time perform the study of such induced GWs that originate from both the inflationary era and the radiation-dominated phase. We report that, besides the traditional process of generating GWs during the radiation-dominated phase, the contribution of the induced GWs in the sub-Hubble regime during inflation can become significant at critical frequency band because of a narrow resonance effect. All contributions sum together to yield a specific profile of the energy spectrum of GWs that can be of observable interest in forthcoming astronomical experiments. Our study shed light on the possible joint probe of PBHs via various observational windows of multi-messenger astronomy, including the search for electromagnetic effects with astronomical telescopes and the stochastic background of relic GWs with GW instruments.
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We show that the intensity of the free-free background radiation from PBHs depends on the mass and abundance of PBHs. In particular, considering the growth of a dark matter (DM) halo around a PBH by non-PBH DM particles strongly enhances the free-free background radiation. Large PBH fraction increase the signal of the free-free emission. However, large PBH fraction also can heat the IGM gas and, accordingly, suppresses the accretion rate. As a result, the free-free emission decreases when the PBH fraction is larger than 0.1. We find that the free-free emission from PBHs in the CMB and radio frequency is much lower than the CMB blackbody spectrum and the observed free-free emission component in the background radiation. Therefore, it is difficult to obtain the constraint from the free-free emission observation. However further theoretical understanding and observation on the free-free emission from cosmological origin is helpful to study the PBH abundance with the stellar mass.
We model the gravitational-wave background created by double compact objects from isolated binary evolution across cosmic time using the textbf{textit{StarTrack}} binary population code. We include population I/II stars as well as metal-free population III stars. Merging and non-merging double compact object binaries are taken into account. In order to model the low frequency signal in the band of the space antenna LISA, we account for the evolution of the redshift and the eccentricity. We find an energy density of $Omega_{GW} sim 1.0 times 10^{-9}$ at the reference frequency of 25 Hz for population I/II only, making the background detectable at 3 $sigma$ after about 7 years of observation with the current generation of ground based detectors, such as LIGO, Virgo and Kagra, operating at design sensitivity. The contribution from population III is one order of magnitude below the population I/II for the total background, but dominates the residual background, after detected sources have been removed, in 3G detectors. It modifies the shape of the spectrum which starts deviating from the usual power law $Omega_{GW}(f) sim f^{2/3}$ after $sim 10$ Hz. The contribution from the population of non merging binaries, on the other hand, is negligible, being orders of magnitude below. Finally, we observe that the eccentricity has no impact in the frequency band of LISA or ground based detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا