Do you want to publish a course? Click here

Horizons in a binary black hole merger II: Fluxes, multipole moments and stability

70   0   0.0 ( 0 )
 Added by Badri Krishnan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study in detail the dynamics and stability of marginally trapped surfaces during a binary black hole merger. This is the second in a two-part study. The first part studied the basic geometric aspects of the world tubes traced out by the marginal surfaces and the status of the area increase law. Here we continue and study the dynamics of the horizons during the merger, again for the head-on collision of two non-spinning black holes. In particular we follow the spectrum of the stability operator during the course of the merger for all the horizons present in the problem and implement systematic spectrum statistics for its analysis. We also study more physical aspects of the merger, namely the fluxes of energy which cross the horizon and cause the area to change. We construct a natural coordinate system on the horizon and decompose the various fields appearing in the flux, primarily the shear of the outgoing null normal, in spin weighted spherical harmonics. For each of the modes we extract the decay rates as the final black hole approaches equilibrium. The late part of the decay is consistent with the expected quasi-normal mode frequencies, while the early part displays a much steeper fall-off. Similarly, we calculate the decay of the horizon multipole moments, again finding two different regimes. Finally, seeking an explanation for this behavior, motivated by the membrane paradigm interpretation, we attempt to identify the different dynamical timescales of the area increase. This leads to the definition of a ``slowness parameter for predicting the onset of transition from a faster to a slower decay.



rate research

Read More

In this second part of a two-part paper, we discuss numerical simulations of a head-on merger of two non-spinning black holes. We resolve the fate of the original two apparent horizons by showing that after intersecting, their world tubes turn around and continue backwards in time. Using the method presented in the first paper to locate these surfaces, we resolve several such world tubes evolving and connecting through various bifurcations and annihilations. This also draws a consistent picture of the full merger in terms of apparent horizons, or more generally, marginally outer trapped surfaces (MOTSs). The MOTS stability operator provides a natural mechanism to identify MOTSs which should be thought of as black hole boundaries. These are the two initial ones and the final remnant. All other MOTSs lie in the interior and are neither stable nor inner trapped.
Recent advances in numerical relativity have revealed how marginally trapped surfaces behave when black holes merge. It is now known that interesting topological features emerge during the merger, and marginally trapped surfaces can have self-intersections. This paper presents the most detailed study yet of the physical and geometric aspects of this scenario. For the case of a head-on collision of non-spinning black holes, we study in detail the world tube formed by the evolution of marginally trapped surfaces. In the first of this two-part study, we focus on geometrical properties of the dynamical horizons, i.e. the world tube traced out by the time evolution of marginally outer trapped surfaces. We show that even the simple case of a head-on collision of non-spinning black holes contains a rich variety of geometric and topological properties and is generally more complex than considered previously in the literature. The dynamical horizons are shown to have mixed signature and are not future marginally trapped everywhere. We analyze the area increase of the marginal surfaces along a sequence which connects the two initially disjoint horizons with the final common horizon. While the area does increase overall along this sequence, it is not monotonic. We find short durations of anomalous area change which, given the connection of area with entropy, might have interesting physical consequences. We investigate the possible reasons for this effect and show that it is consistent with existing proofs of the area increase law.
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equilibrium. However, we still lack a detailed understanding of the relation between the horizon geometry in these three regimes and the observed waveform. Here we show that the well known inspiral chirp waveform has a clear counterpart on black hole horizons, namely, the shear of the outgoing null rays at the horizon. We demonstrate that the shear behaves very much like a compact binary coalescence waveform with increasing frequency and amplitude. Furthermore, the parameters of the system estimated from the horizon agree with those estimated from the waveform. This implies that even though black hole horizons are causally disconnected from us, assuming general relativity to be true, we can potentially infer some of their detailed properties from gravitational wave observations.
We examine the structure of the event horizon for numerical simulations of two black holes that begin in a quasicircular orbit, inspiral, and finally merge. We find that the spatial cross section of the merged event horizon has spherical topology (to the limit of our resolution), despite the expectation that generic binary black hole mergers in the absence of symmetries should result in an event horizon that briefly has a toroidal cross section. Using insight gained from our numerical simulations, we investigate how the choice of time slicing affects both the spatial cross section of the event horizon and the locus of points at which generators of the event horizon cross. To ensure the robustness of our conclusions, our results are checked at multiple numerical resolutions. 3D visualization data for these resolutions are available for public access online. We find that the structure of the horizon generators in our simulations is consistent with expectations, and the lack of toroidal horizons in our simulations is due to our choice of time slicing.
We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two non-spinning unequal mass black holes, we observe that the MOTS associated with the final black hole merges with the two initially disjoint surfaces corresponding to the two initial black holes. This yields a connected sequence of MOTSs interpolating between the initial and final state all the way through the non-linear binary black hole merger process. In addition, we show the existence of a MOTS with self-intersections formed immediately after the merger. This scenario now allows us to track physical quantities (such as mass, angular momentum, higher multipoles, and fluxes) across the merger, which can be potentially compared with the gravitational wave signal in the wave-zone, and with observations by gravitational wave detectors. This also suggests a possibility of proving the Penrose inequality mathematically for generic astrophysical binary back hole configurations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا