Do you want to publish a course? Click here

Multinomial, Poisson and Gaussian statistics in count data analysis

159   0   0.0 ( 0 )
 Added by Jakob Lass
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is generally known that counting statistics is not correctly described by a Gaussian approximation. Nevertheless, in neutron scattering, it is common practice to apply this approximation to the counting statistics; also at low counting numbers. We show that the application of this approximation leads to skewed results not only for low-count features, such as background level estimation, but also for its estimation at double-digit count numbers. In effect, this approximation is shown to be imprecise on all levels of count. Instead, a Multinomial approach is introduced as well as a more standard Poisson method, which we compare with the Gaussian case. These two methods originate from a proper analysis of a multi-detector setup and a standard triple axis instrument.We devise a simple mathematical procedure to produce unbiased fits using the Multinomial distribution and demonstrate this method on synthetic and actual inelastic scattering data. We find that the Multinomial method provide almost unbiased results, and in some cases outperforms the Poisson statistics. Although significantly biased, the Gaussian approach is in general more robust in cases where the fitted model is not a true representation of reality. For this reason, a proper data analysis toolbox for low-count neutron scattering should therefore contain more than one model for counting statistics.



rate research

Read More

393 - I. Grabec 2007
Redundancy of experimental data is the basic statistic from which the complexity of a natural phenomenon and the proper number of experiments needed for its exploration can be estimated. The redundancy is expressed by the entropy of information pertaining to the probability density function of experimental variables. Since the calculation of entropy is inconvenient due to integration over a range of variables, an approximate expression for redundancy is derived that includes only a sum over the set of experimental data about these variables. The approximation makes feasible an efficient estimation of the redundancy of data along with the related experimental information and information cost function. From the experimental information the complexity of the phenomenon can be simply estimated, while the proper number of experiments needed for its exploration can be determined from the minimum of the cost function. The performance of the approximate estimation of these statistics is demonstrated on two-dimensional normally distributed random data.
We discuss the problem of extending data mining approaches to cases in which data points arise in the form of individual graphs. Being able to find the intrinsic low-dimensionality in ensembles of graphs can be useful in a variety of modeling contexts, especially when coarse-graining the detailed graph information is of interest. One of the main challenges in mining graph data is the definition of a suitable pairwise similarity metric in the space of graphs. We explore two practical solutions to solving this problem: one based on finding subgraph densities, and one using spectral information. The approach is illustrated on three test data sets (ensembles of graphs); two of these are obtained from standard graph generating algorithms, while the graphs in the third example are sampled as dynamic snapshots from an evolving network simulation.
The current and upcoming generation of Very Large Volume Neutrino Telescopes---collecting unprecedented quantities of neutrino events---can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of binned event distributions in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.
65 - Irina Makarenko 2018
The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical MHD, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust it{quantitative} measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to HI observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent MHD simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field.
In high-energy physics, with the search for ever smaller signals in ever larger data sets, it has become essential to extract a maximum of the available information from the data. Multivariate classification methods based on machine learning techniques have become a fundamental ingredient to most analyses. Also the multivariate classifiers themselves have significantly evolved in recent years. Statisticians have found new ways to tune and to combine classifiers to further gain in performance. Integrated into the analysis framework ROOT, TMVA is a toolkit which hosts a large variety of multivariate classification algorithms. Training, testing, performance evaluation and application of all available classifiers is carried out simultaneously via user-friendly interfaces. With version 4, TMVA has been extended to multivariate regression of a real-valued target vector. Regression is invoked through the same user interfaces as classification. TMVA 4 also features more flexible data handling allowing one to arbitrarily form combined MVA methods. A generalised boosting method is the first realisation benefiting from the new framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا