No Arabic abstract
The Kitaev model is a rare example of an analytically solvable and physically instantiable Hamiltonian yielding a topological quantum spin liquid ground state. Here we report signatures of Kitaev spin liquid physics in the honeycomb magnet $Li_3Co_2SbO_6$, built of high-spin $it{d^7}$ ($Co^{2+}$) ions, in contrast to the more typical low-spin $it{d^5}$ electron configurations in the presence of large spin-orbit coupling. Neutron powder diffraction measurements, heat capacity, and magnetization studies support the development of a long-range antiferromagnetic order space group of $it{C_C}2/it{m}$, below $it{T_N}$ = 11 K at $it{mu_0H}$ = 0 T. The magnetic entropy recovered between $it{T}$ = 2 K and 50 K is estimated to be 0.6Rln2, in good agreement with the value expected for systems close to a Kitaev quantum spin liquid state. The temperature-dependent magnetic order parameter demonstrates a $beta$ value of 0.19(3), consistent with XY anisotropy and in-plane ordering, with Ising-like interactions between layers. Further, we observe a spin-flop driven crossover to ferromagnetic order with space group of $it{C}2/it{m}$ under an applied magnetic field of $it{mu_0H}$ $approx$ 0.7 T at $it{T}$ = 2 K. Magnetic structure analysis demonstrates these magnetic states are competing at finite applied magnetic fields even below the spin-flop transition. Both the $it{d^7}$ compass model, a quantitative comparison of the specific heat of $Li_3Co_2SbO_6$, and related honeycomb cobaltates to the anisotropic Kitaev model further support proximity to a Kitaev spin liquid state. This material demonstrates the rich playground of high-spin $it{d^7}$ systems for spin liquid candidates, and complements known $it{d^5}$ Ir- and Ru-based materials.
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitaev candidate materials, such as $alpha$-RuCl$_3$. Currently, two competing scenarios exist for the intermediate field phase of this compound ($B=7-10$ T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations.
Quantum spin liquid is a disordered magnetic state with fractional spin excitations. Its clearest example is found in an exactly solved Kitaev honeycomb model where a spin flip fractionalizes into two types of anyons, quasiparticles that are neither fermions nor bosons: a pair of gauge fluxes and a Majorana fermion. Here we demonstrate this kind of fractionalization in the Kitaev paramagnetic state of the honeycomb magnet $alpha$-RuCl$_3$. The spin-excitation gap measured by nuclear magnetic resonance consists of the predicted Majorana fermion contribution following the cube of the applied magnetic field, and a finite zero-field contribution matching the predicted size of the gauge-flux gap. The observed fractionalization into gapped anyons survives in a broad range of temperatures and magnetic fields despite inevitable non-Kitaev interactions between the spins, which are predicted to drive the system towards a gapless ground state. The gapped character of both anyons is crucial for their potential application in topological quantum computing.
We study the Kitaev-Heisenberg-$Gamma$ model with antiferromagnetic Kitaev exchanges in the strong anisotropic (toric code) limit to understand the phases and the intervening phase transitions between the gapped $Z_2$ quantum spin liquid and the spin-ordered (in the Heisenberg limit) as well as paramagnetic phases (in the pseudo-dipolar, $Gamma$, limit). We find that the paramagnetic phase obtained in the large $Gamma$ limit has no topological entanglement entropy and is proximate to a gapless critical point of a system described by an equal superposition of differently oriented stacked one-dimensional $Z_2times Z_2$ symmetry protected topological phases. Using a combination of exact diagonalization calculations and field-theoretic analysis we map out the phases and phase transitions to reveal the complete phase diagram as a function of the Heisenberg, the Kitaev, and the pseudo-dipolar interactions. Our work shows a rich plethora of unconventional phases and phase transitions and provides a comprehensive understanding of the physics of anisotropic Kitaev-Heisenberg-$Gamma$ systems along with our recent paper [Phys. Rev. B 102, 235124 (2020)] where the ferromagnetic Kitaev exchange was studied.
We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling $K_2$, which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iridate Na$_2$IrO$_3$, and may also play a role in $alpha$-RuCl$_3$ and Li$_2$IrO$_3$. This coupling naturally explains the zigzag ordering (without introducing unrealistically large longer-range Heisenberg exchange terms) and the special entanglement between real and spin space observed recently in Na$_2$IrO$_3$. Moreover, the minimal $K_1$-$K_2$ model that we present here holds the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to the fundamentally different symmetries of the classical and quantum counterparts.
Quantum spin liquid involves fractionalized quasipariticles such as spinons and visons. They are expressed as itinerant Majorana fermions and $Z_2$ fluxes in the Kitaev model with bond-dependent exchange interactions on a honeycomb spin lattice. The observation has recently attracted attention for a candidate material $alpha$-RuCl$_3$, showing spin liquid behaviour induced by a magnetic field. Since the observable spin excitation is inherently composed of the two quasiparticles, which further admix each other by setting in the magnetic field as well as non-Kitaev interactions, their individual identification remains challenging. Here we report an emergent low-lying spin excitation through nuclear magnetic and quadrupole resonance measurements down to $sim 0.4$ K corresponding to $1/500$ of the exchange energy under the finely tuned magnetic field across the quantum critical point. We determined the critical behaviour of low-lying excitations and found evolution of two kinds of the spin gap at high fields. The two excitations exhibit repulsive magnetic field dependence, suggesting anti-crossing due to the hybridization between fractionalized quasiparticles.