Do you want to publish a course? Click here

Laser-induced Electron-Transfer in the Dissociative Multiple Ionization of Argon Dimers

52   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers sub-cycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifest themselves as a distinct phase-shift between the measured asymmetry of electron emission curves of the $text{Ar}^{+}+text{Ar}^{2+}$ and $text{Ar}^{2+}+text{Ar}^{2+}$ fragmentation channels. Our work discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving inter-molecular electron-transfer processes.



rate research

Read More

We have deduced the structure of the ce{bromobenzene}--ce{I2} heterodimer and the ce{(bromobenzene)2} homodimer inside helium droplets using a combination of laser-induced alignment, Coulomb explosion imaging, and three-dimensional ion imaging. The complexes were fixed in a variety of orientations in the laboratory frame, then in each case multiply ionized by an intense laser pulse. A three dimensional ion imaging detector, including a Timepix3 detector allowed us to measure the correlations between velocity vectors of different fragments and, in conjunction with classical simulations, work backward to the initial structure of the complex prior to explosion. For the heterodimer, we find that the ce{I2} molecular axis intersects the phenyl ring of the bromobenzene approximately perpendicularly. The homodimer has a stacked parallel structure, with the two bromine atoms pointing in opposite directions. These results illustrate the ability of Coulomb explosion imaging to determine the structure of large complexes, and point the way toward real-time measurements of bimolecular reactions inside helium droplets.
We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron.
As opposed to purely molecular systems where electron dynamics proceed only through intramolecular processes, weakly bound complexes such as He droplets offer an environment where local excitations can interact with neighbouring embedded molecules leading to new intermolecular relaxation mechanisms. Here, we report on a new decay mechanism leading to the double ionization of alkali dimers attached to He droplets by intermolecular energy transfer. From the electron spectra, the process is similar to the well-known shake-off mechanism observed in double Auger decay and single-photon double ionization, however, in this case, the process is dominant, occurring with efficiencies equal to, or greater than, single ionization by energy transfer. Although an alkali dimer attached to a He droplet is a model case, the decay mechanism is relevant for any system where the excitation energy of one constituent exceeds the double ionization potential of another neighbouring molecule. The process is, in particular, relevant for biological systems, where radicals and slow electrons are known to cause radiation damage
The ionization dynamics of pure He nanodroplets irradiated by EUV radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence (VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He+, He2+, and He3+. Surprisingly, below the autoionization threshold of He droplets we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we evidence inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.
We study frustrated double ionization in a strongly-driven heteronuclear molecule HeH$^{+}$ and compare with H$_2$. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH$^{+}$. We find that this distribution has more than one peak for strongly-driven HeH$^{+}$, a feature we do not find to be present for strongly-driven H$_{2}$. Moreover, we compute the probability distribution of the n quantum number of frustrated double ionization. We find that this distribution has several peaks for strongly-driven HeH$^{+}$, while the respective distribution has one main peak and a shoulder at lower n quantum numbers for strongly-driven H$_{2}$. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا