Negative refraction in the relativistic electron gas


Abstract in English

We show that a gas of relativistic electrons is a left-handed material at low frequencies by computing the effective electric permittivity and effective magnetic permeability that appear in Maxwells equations in terms of the responses appearing in the constitutive relations, and showing that the former are both negative below the {it same} frequency, which coincides with the zero-momentum frequency of longitudinal plasmons. We also show, by explicit computation, that the photonic mode of the electromagnetic radiation does not dissipate energy, confirming that it propagates in the gas with the speed of light in vacuum, and that the medium is transparent to it. We then combine those results to show that the gas has a negative effective index of refraction $n_{rm eff}=-1$. We illustrate the consequences of this fact for Snells law, and for the reflection and transmission coefficients of the gas.

Download