Do you want to publish a course? Click here

Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering

90   0   0.0 ( 0 )
 Added by Shayne Reichard
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would benefit from a depleted target. A high-statistics observation of $pp$ neutrinos would allow us to infer the values of the weak mixing angle, $sin^2theta_w$, and the electron-type neutrino survival probability, $P_e$, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, at an exposure of 300 ty. An observation of $pp$ and $^7$Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high (GS98) and low metallicity (AGS09) solar models with 2.1-2.5$sigma$ significance, independent of external measurements from other experiments or a measurement of $^8$B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $^{131}$Xe.



rate research

Read More

A first measurement of neutrinos from the CNO fusion cycle in the Sun would allow a resolution to the current solar metallicity problem. Detection of these low-energy neutrinos requires a low-threshold detector, while discrimination from radioactive backgrounds in the region of interest is significantly enhanced via directional sensitivity. This combination can be achieved in a water-based liquid scintillator target, which offers enhanced energy resolution beyond a standard water Cherenkov detector. We study the sensitivity of such a detector to CNO neutrinos under various detector and background scenarios, and draw conclusions about the requirements for such a detector to successfully measure the CNO neutrino flux. A detector designed to measure CNO neutrinos could also achieve a few-percent measurement of pep neutrinos.
This article details the potential for using Charge Coupled Devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei. The detection of neutrinos through this standard model process has not been accessible because of the small energy deposited in such interactions with the detector nuclei. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The devices we discuss can be operated at a threshold of approximately 30 eV, making them ideal for observing this signal. For example, the number of coherent scattering events expected on a 52 gram CCD array located next to a power nuclear reactor is estimated as approximately 626 events/year. The results of our study show that detection at a confidence level of 99% can be reached within three months for this kind of detector array.
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$,$t total natural xenon inventory, 40$,$t will be the active target of a time projection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4times10^{27},$yr, using a fiducial volume of 5t of natural xenon and 10$,$yr of operation with a background rate of less than 0.2$~$events/(t$cdot$yr) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $^{136}$Xe.
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based $ u_mu$ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to $sim$ 10% due to uncertainties in hadron production and focusing. We have isolated a sample of 135 $pm$ 17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI $ u_mu$ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا