Compositional gradients in sputtered Ti-Au alloys: Site-selective Au-decoration of anodic TiO$_2$ nanotubes towards enhanced photocatalytic H$_2$ evolution


Abstract in English

Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placement on the photocatalyst, in relation to parameters such as the TiO$_2$ morphology, illumination wavelength and pathway, and light penetration depth in the photocatalyst. Here we present an approach for site-selective intrinsic-decoration of anodic TiO$_2$ nanotubes (TNs) with Au nanoparticles: we produce, by Ti and Au co-sputtering, Ti-Au alloy layers that feature compositional gradients across their thickness; these layers, when anodized under self-ordering electrochemical conditions, can form Au-decorated TNs where the Au nanoparticle density and placement vary according to the Au concentration profile in the metal alloy substrates. Our results suggest that, the Au co-catalyst placement strongly affects the photocatalytic H$_2$ evolution performance of the TNs layers. We demonstrate that, when growing Au-decorated TNs, the use of Ti-Au substrates with a suitable Au compositional gradient can lead to higher H$_2$ evolution rates compared to TNs classically grown with a homogenous co-catalyst decoration. As a side effect, a proper placement of the co-catalyst nanoparticles allows for reducing the amount of noble metal without dumping the H$_2$ evolution activity.

Download