Do you want to publish a course? Click here

Relativistic corrections to the vector meson light front wave function

69   0   0.0 ( 0 )
 Added by Jani Penttala
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We compute a light front wave function for heavy vector mesons based on long distance matrix elements constrained by decay width analyses in the Non Relativistic QCD framework. Our approach provides a systematic expansion of the wave function in quark velocity. The first relativistic correction included in our calculation is found to be significant, and crucial for a good description of the HERA exclusive $mathrm{J}/psi$ production data. When looking at cross section ratios between nuclear and proton targets, the wave function dependence does not cancel out exactly. In particular the fully non-relativistic limit is found not to be a reliable approximation even in this ratio. The important role of the Melosh rotation to express the rest frame wave function on the light front is illustrated.



rate research

Read More

The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple one-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized production. The relativistic corrections are found to be important for a good description of the HERA data, especially at small values of the photon virtuality. The next-to-leading order results for longitudinal production are evaluated numerically. We also demonstrate how the vector meson production provides complementary information to the structure functions for extracting the initial condition for the small-$x$ evolution of the dipole-proton scattering amplitude.
We study the twist-2 distribution amplitudes (DAs) and the decay constants of pseudoscalar light ($pi$, $K$) and heavy ($D$, $D_s$, $B$, $B_s$) mesons as well as the longitudinally and transversely polarized vector light ($rho$, $K^*$) and heavy ($D^*$, $D_s^*$, $B^*$, $B_s^*$) mesons in the light-front quark model with the Coulomb plus exponential-type confining potential $V_{rm {exp}} = a + b e^{alpha r}$ in addition to the hyperfine interaction. We first compute the mass spectra of ground state pseudoscalar and vector light and heavy mesons and fix the model parameters necessary for the analysis, applying the variational principle with the trial wave function up to the first three lowest order harmonic oscillator (HO) wave functions $Phi(x, textbf{k}_bot) = sum_{n=1}^{3} c_n phi_{nS}$. We then obtain the numerical results for the corresponding decay constants of light and heavy mesons. We estimate the DAs, analyze their variation as a function of momentum fraction and compute the first six $xi$-moments of the $B$ and $D$ mesons as well. We compare our results with the available experimental data as well as with the other theoretical model predictions.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these scales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term, proportional to $omega^2$, is obtained taking into account the first relativistic correction. It is shown that the complete result for this correction differs essentially from the commonly used term $Deltaalpha$, proportional to the r.m.s. charge radius of the system. We propose that the same situation can take place in the more complicated case of hadrons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا