We introduce a consistent ansatz for the baby Skyrme model in (2+1)-dimensions which is able to reduce the complete set of field equations to just one equation for the profile function in situations in which the baby baryon charge can be arbitrary. Many analytic solutions both with and without the inclusion of the effects of the minimal coupling with the Maxwell field are constructed. Linear stability and other physical properties are discussed. These analytic gauged baby Skyrmions generate a persistent $U(1)$ current which cannot be turned off continuously as it is tied to the topological charge of the baby Skyrmions themselves. In the simplest non-trivial case of a gauged baby Skyrmion, a very important role is played by the Mathieu equation with an effective coupling constant which can be computed explicitly. These configurations are a very suitable arena to test resurgence in a non-integrable context.
We construct analytic (3+1)-dimensional Skyrmions living at finite Baryon density in the SU(N) Skyrme model that are not trivial embeddings of SU(2) into SU(N). We used Euler angles decomposition for arbitrary N and the generalized hedgehog Ansatz at finite Baryon density. The Skyrmions of high topological charge that we find represent smooth Baryonic layers whose properties can be computed explicitly. In particular, we determine the energy to Baryon charge ratio for any N showing the smoothness of the large N limit. The closeness to the BPS bound of these configurations can also be analyzed. The energy density profiles of these finite density Skyrmions have textit{lasagna-like} shape in agreement with recent experimental findings. The shear modulus can be precisely estimated as well and our analytical result is close to recent numerical studies in the literature.
We find an analytic solution of the backreacted coupled fermion-baby-Skyrmion system valid at all values of the coupling parameter. The solution, built on a finite cylinder, is generally given in terms of the Heun functions and satisfies the physical requirements of finite energy. For a special value of the coupling parameter, the solution becomes a periodic crystal of baby-Skyrmions and fermions defined on the plane $mathbb{R}^2$. These solutions are trivially extended to multi-solitonic branches of higher Baryon number.
We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby Skyrme model in which the global O(3) symmetry is broken to the SO(2). Two particular choices of the potential term are considered, the old potential and the new double vacuum potential, We do not impose any assumptions about the symmetry on the fields. Our results confirm existence of two types of instabilities determined by the relation between the mass parameter of the potential and the angular frequency.
The method of analytic continuation is one of the most powerful tools to circumvent the sign problem in lattice QCD. The present study is part of a larger project which, based on the investigation of QCD-like theories which are free of the sign problem, is aimed at testing the validity of the method of analytic continuation and at improving its predictivity, in view of its application to real QCD. We have shown that a considerable improvement can be achieved if suitable functions are used to interpolate data with imaginary chemical potential. We present results obtained in a theory free of the sign problem such as two-color QCD at finite chemical potential.
We construct explicit analytic solutions of the $SU(N)$-Skyrme model (for generic $N$) suitable to describe different phases of nuclear pasta at finite volume in $(3+1)$ dimensions. The first type are crystals of Baryonic tubes (nuclear spaghetti) while the second type are smooth Baryonic layers (nuclear lasagna). Both the ansatz for the spaghetti and the ansatz for the lasagna phases reduce the complete set of Skyrme field equations to just one integrable equation for the profile within sectors of arbitrary high topological charge. We compute explicitly the total energy of both configurations in terms of the flavor number, the density and the Baryonic charge. Remarkably, our analytic results disclose a novel finite-density transition arising from the competition between the nuclear spaghetti and lasagna phases. Well within the range of validity of the model, one can see that the lasagna phase is energetically favored at high density while the spaghetti is favored at low density. Finally, we briefly discuss the large $N$ limit of our configurations.