Do you want to publish a course? Click here

Identifiability of Stochastically Modelled Reaction Networks

140   0   0.0 ( 0 )
 Added by Jinsu Kim
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous time Markov processes. In this manuscript, the identifiability of the underlying network structure with a given stochastic system dynamics is studied. It is shown that some data types related to the associated stochastic dynamics can uniquely identify the underlying network structure as well as the system parameters. The accuracy of the presented network inference is investigated when given dynamical data is obtained via stochastic simulations.



rate research

Read More

We consider discrete-space continuous-time Markov models of reaction networks and provide sufficient conditions for the following stability condition to hold: each state in a closed, irreducible component of the state space is positive recurrent; moreover the time required for a trajectory to enter such a component has finite expectation. The provided analytical results depend solely on the underlying structure of the reaction network and not on the specific choice of model parameters. Our main results apply to binary systems and our main analytical tool is the tier structure previously utilized successfully in the study of deterministic models of reaction networks.
Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are constructed from elementary building blocks, i.e., the species. In this paper, we consider these networks in an ErdH os-Renyi framework and, under suitable assumptions, derive a threshold function for the network to have a deficiency of zero, which is a property of great interest in the reaction network community. Specifically, if the number of species is denoted by $n$ and if the edge probability is denote by $p_n$, then we prove that the probability of a random binary network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$, as $n to infty$, and converges to 0 if $frac{p_n}{r(n)}to infty$, as $n to infty$, where $r(n)=frac{1}{n^3}$.
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provided a framework to quantify the prevalence of deficiency zero among randomly generated reaction networks. Specifically, given a randomly generated binary reaction network with $n$ species, with an edge between two arbitrary vertices occurring independently with probability $p_n$, we established the threshold function $r(n)=frac{1}{n^3}$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$ and converges to 0 if $frac{p_n}{r(n)}toinfty$, as $n to infty$. With the base ErdH os-Renyi framework as a starting point, the current paper provides a significantly more flexible framework by weighting the edge probabilities via control parameters $alpha_{i,j}$, with $i,jin {0,1,2}$ enumerating the types of possible vertices (zeroth, first, or second order). The control parameters can be chosen to generate random reaction networks with a specific underlying structure, such as closed networks with very few inflow and outflow reactions, or open networks with abundant inflow and outflow. Under this new framework, for each choice of control parameters ${alpha_{i,j}}$, we establish a threshold function $r(n,{alpha_{i,j}})$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n,{alpha_{i,j}})}to 0$ and converges to 0 if $frac{p_n}{r(n,{alpha_{i,j}})}to infty$.
It is well known that stochastically modeled reaction networks that are complex balanced admit a stationary distribution that is a product of Poisson distributions. In this paper, we consider the following related question: supposing that the initial distribution of a stochastically modeled reaction network is a product of Poissons, under what conditions will the distribution remain a product of Poissons for all time? By drawing inspiration from Crispin Gardiners Poisson representation for the solution to the chemical master equation, we provide a necessary and sufficient condition for such a product-form distribution to hold for all time. Interestingly, the condition is a dynamical complex-balancing for only those complexes that have multiplicity greater than or equal to two (i.e. the higher order complexes that yield non-linear terms to the dynamics). We term this new condition the dynamical and restricted complex balance condition (DR for short).
248 - Matthew D. Johnston 2013
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analysed via a variety of techniques, including elementary flux mode analysis, algebraic techniques (e.g. Groebner bases), and deficiency theory. In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a networks capacity to permit a particular class of steady states, called toric steady states, to topological properties of a related network called a translated chemical reaction network. These networks share their reaction stoichiometries with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا