Do you want to publish a course? Click here

A comprehensive study of analyzing powers in the proton-deuteron break-up channel at 135 MeV

60   0   0.0 ( 0 )
 Added by Mohammad Taqy Bayat
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A measurement of the analyzing powers for the $^2$H$(vec{p},pp)n$ break-up reaction was carried out at KVI exploiting a polarized-proton beam at an energy of 135 MeV. The scattering angles and energies of the final-state protons were measured using the Big Instrument for Nuclear-polarization Analysis (BINA) with a nearly $4pi$ geometrical acceptance. In this work, we analyzed a large number of kinematical geometries including forward-forward configurations in which both the final-state particles scatter to small polar angles and backward-forward configurations in which one of the final-state particles scatters to large polar angles. The results are compared with Faddeev calculations based on modern nucleon-nucleon (NN) and three-nucleon (3N) potentials. Discrepancies between polarization data and theoretical predictions are observed for configurations corresponding to small relative azimuthal angles between the two final-state protons. These configurations show a large sensitivity to 3N force effects.



rate research

Read More

The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.
A measurement of vector analyzing powers in elastic deuteron-carbon scattering has been performed at the Cooler Synchrotron COSY of Forschungszentrum Julich, Germany. Seven kinetic beam energies between 170 and 380 MeV have been used. A vector-polarized beam from a polarized deuteron source was injected, accelerated to the final desired energy and stored in COSY. A thin needle-shaped diamond strip was used as a carbon target, onto which the beam was slowly steered. Elastically scattered deuterons were identified in the forward direction using various layers of scintillators and straw tubes. Where data exist in the literature (at 200 and 270 MeV), excellent agreement of the angular shape was found. The beam polarization of the presented data was deduced by fitting the absolute scale of the analyzing power to these references. Our results extend the world data set and are necessary for polarimetry of future electric dipole moment searches at storage rings. They will as well serve as an input for theoretical description of polarized hadron-hadron scattering.
High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the center-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation.
The vector and tensor analysing powers in deuteron-proton elastic scattering have been measured in the forward hemisphere at deuteron kinetic energies of 1.2 GeV and 2.27 GeV using the ANKE spectrometer at the COSY storage ring. The results are compared with other experimental data and with predictions made within the framework of Glauber multiple scattering theory.
Precision measurements of vector and tensor analyzing powers of the $^{2}{rm H}(vec d,dp){n}$ break-up process for configurations in the vicinity of the quasi-free scattering regime with the neutron as spectator, are presented. These measurements are performed with a polarized deuteron-beam with an energy of 65 MeV/nucleon impinging on a liquid-deuterium target. The experiment was conducted at the AGOR facility at KVI using the BINA 4$pi$-detection system. Events for which the final-state deuteron and proton are coplanar have been analyzed and the data have been sorted for various momenta of the missing neutron. In the limit of vanishing neutron momentum and at large deuteron-proton momentum transfer, the data agree well with the measured and theoretically predicted spin observables of the elastic deuteron-proton scattering process. The agreement deteriorates rapidly with increasing neutron momentum and/or decreasing momentum transfer from the deuteron beam to the outgoing proton. This study reveals the presence of a significant contribution of final-state interactions even at very small neutron momenta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا