No Arabic abstract
Relative $t$-designs in the $n$-dimensional hypercube $mathcal{Q}_n$ are equivalent to weighted regular $t$-wise balanced designs, which generalize combinatorial $t$-$(n,k,lambda)$ designs by allowing multiple block sizes as well as weights. Partly motivated by the recent study on tight Euclidean $t$-designs on two concentric spheres, in this paper we discuss tight relative $t$-designs in $mathcal{Q}_n$ supported on two shells. We show under a mild condition that such a relative $t$-design induces the structure of a coherent configuration with two fibers. Moreover, from this structure we deduce that a polynomial from the family of the Hahn hypergeometric orthogonal polynomials must have only integral simple zeros. The Terwilliger algebra is the main tool to establish these results. By explicitly evaluating the behavior of the zeros of the Hahn polynomials when they degenerate to the Hermite polynomials under an appropriate limit process, we prove a theorem which gives a partial evidence that the non-trivial tight relative $t$-designs in $mathcal{Q}_n$ supported on two shells are rare for large $t$.
A relative t-design in the binary Hamming association schemes H(n,2) is equivalent to a weighted regular t-wise balanced design, i.e., certain combinatorial t-design which allow different sizes of blocks and a weight function on blocks. In this paper, we study relative t-designs in H(n,2), putting emphasis on Fisher type inequalities and the existence of tight relative t-designs. We mostly consider relative t-designs on two shells. We prove that if the weight function is constant on each shell of a relative t-design on two shells then the subset in each shell must be a combinatorial (t-1)-design. This is a generalization of the result of Kageyama who proved this under the stronger assumption that the weight function is constant on the whole block set. Using this, we define tight relative t-designs for odd t, and a strong restriction on the possible parameters of tight relative t-designs in H(n,2). We obtained a new family of such tight relative t-designs, which were unnoticed before. We will give a list of feasible parameters of such relative 3-designs with n up to 100, and then we discuss the existence and/or the non-existence of such tight relative 3-designs. We also discuss feasible parameters of tight relative 4-designs on two shells in H(n,2) with n up 50. In this study we come up with the connection on the topics of classical design theory, such as symmetric 2-designs (in particular 2-(4u-1,2u-1,u-1) Hadamard designs) and Driessens result on the non-existence of certain 3-designs. We believe the Problem 1 and Problem 2 presented in Section 5.2 open a new way to study relative t-designs in H(n,2). We conclude our paper listing several open problems.
We study a natural Markov chain on ${0,1,cdots,n}$ with eigenvectors the Hahn polynomials. This explicit diagonalization makes it possible to get sharp rates of convergence to stationarity. The process, the Burnside process, is a special case of the celebrated `Swendsen-Wang or `data augmentation algorithm. The description involves the beta-binomial distribution and Mallows model on permutations. It introduces a useful generalization of the Burnside process.
We study the non-rigidity of Euclidean $t$-designs, namely we study when Euclidean designs (in particular certain tight Euclidean designs) can be deformed keeping the property of being Euclidean $t$-designs. We show that certain tight Euclidean $t$-designs are non-rigid, and in fact satisfy a stronger form of non-rigidity which we call strong non-rigidity. This shows that there are plenty of non-isomorphic tight Euclidean $t$-designs for certain parameters, which seems to have been unnoticed before. We also include the complete classification of tight Euclidean $2$-designs.
As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $kappa(G, T)$ (resp. $T$-substructure connectivity $kappa^{s}(G, T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that each is isomorphic to $T$ (resp. to a connected subgraph of $T$) so that $G-F$ is disconnected. For $n$-dimensional hypercube $Q_{n}$, Lin et al. [6] showed $kappa(Q_{n},K_{1,1})=kappa^{s}(Q_{n},K_{1,1})=n-1$ and $kappa(Q_{n},K_{1,r})=kappa^{s}(Q_{n},K_{1,r})=lceilfrac{n}{2}rceil$ for $2leq rleq 3$ and $ngeq 3$. Sabir et al. [11] obtained that $kappa(Q_{n},K_{1,4})=kappa^{s}(Q_{n},K_{1,4})=lceilfrac{n}{2}rceil$ for $ngeq 6$, and for $n$-dimensional folded hypercube $FQ_{n}$, $kappa(FQ_{n},K_{1,1})=kappa^{s}(FQ_{n},K_{1,1})=n$, $kappa(FQ_{n},K_{1,r})=kappa^{s}(FQ_{n},K_{1,r})=lceilfrac{n+1}{2}rceil$ with $2leq rleq 3$ and $ngeq 7$. They proposed an open problem of determining $K_{1,r}$-structure connectivity of $Q_n$ and $FQ_n$ for general $r$. In this paper, we obtain that for each integer $rgeq 2$, $kappa(Q_{n};K_{1,r})=kappa^{s}(Q_{n};K_{1,r})=lceilfrac{n}{2}rceil$ and $kappa(FQ_{n};K_{1,r})=kappa^{s}(FQ_{n};K_{1,r})= lceilfrac{n+1}{2}rceil$ for all integers $n$ larger than $r$ in quare scale. For $4leq rleq 6$, we separately confirm the above result holds for $Q_n$ in the remaining cases.
We compute the ($q_1,q_2$)-deformed Hermite polynomials by replacing the quantum harmonic oscillator problem to Fibonacci oscillators. We do this by applying the ($q_1, q_2$)-extension of Jackson derivative. The deformed energy spectrum is also found in terms of these parameters. We conclude that the deformation is more effective in higher excited states. We conjecture that this achievement may find applications in the inclusion of disorder and impurity in quantum systems. The ordinary quantum mechanics is easily recovered as $q_1 = 1$ and $q_2to1$ or vice versa.