No Arabic abstract
We present a novel technique for sparse principal component analysis. This method, named Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA), is based on the recently detailed formula for computing normed, squared eigenvector loadings of a Hermitian matrix from the eigenvalues of the full matrix and associated sub-matrices. Relative to the state-of-the-art LASSO-based sparse PCA method of Witten, Tibshirani and Hastie, the EESPCA technique offers a two-orders-of-magnitude improvement in computational speed, does not require estimation of tuning parameters, and can more accurately identify true zero principal component loadings across a range of data matrix sizes and covariance structures. Importantly, EESPCA achieves these performance benefits while maintaining a reconstruction error close to that generated by the Witten et al. approach. EESPCA is a practical and effective technique for sparse PCA with particular relevance to computationally demanding problems such as the analysis of large data matrices or statistical techniques like resampling that involve the repeated application of sparse PCA.
There are several cutting edge applications needing PCA methods for data on tori and we propose a novel torus-PCA method with important properties that can be generally applied. There are two existing general methods: tangent space PCA and geodesic PCA. However, unlike tangent space PCA, our torus-PCA honors the cyclic topology of the data space whereas, unlike geodesic PCA, our torus-PCA produces a variety of non-winding, non-dense descriptors. This is achieved by deforming tori into spheres and then using a variant of the recently developed principle nested spheres analysis. This PCA analysis involves a step of small sphere fitting and we provide an improved test to avoid overfitting. However, deforming tori into spheres creates singularities. We introduce a data-adaptive pre-clustering technique to keep the singularities away from the data. For the frequently encountered case that the residual variance around the PCA main component is small, we use a post-mode hunting technique for more fine-grained clustering. Thus in general, there are three successive interrelated key steps of torus-PCA in practice: pre-clustering, deformation, and post-mode hunting. We illustrate our method with two recently studied RNA structure (tori) data sets: one is a small RNA data set which is established as the benchmark for PCA and we validate our method through this data. Another is a large RNA data set (containing the small RNA data set) for which we show that our method provides interpretable principal components as well as giving further insight into its structure.
Sparse Principal Component Analysis (SPCA) is widely used in data processing and dimension reduction; it uses the lasso to produce modified principal components with sparse loadings for better interpretability. However, sparse PCA never considers an additional grouping structure where the loadings share similar coefficients (i.e., feature grouping), besides a special group with all coefficients being zero (i.e., feature selection). In this paper, we propose a novel method called Feature Grouping and Sparse Principal Component Analysis (FGSPCA) which allows the loadings to belong to disjoint homogeneous groups, with sparsity as a special case. The proposed FGSPCA is a subspace learning method designed to simultaneously perform grouping pursuit and feature selection, by imposing a non-convex regularization with naturally adjustable sparsity and grouping effect. To solve the resulting non-convex optimization problem, we propose an alternating algorithm that incorporates the difference-of-convex programming, augmented Lagrange and coordinate descent methods. Additionally, the experimental results on real data sets show that the proposed FGSPCA benefits from the grouping effect compared with methods without grouping effect.
Sparse principal component analysis (PCA) is a popular tool for dimensional reduction of high-dimensional data. Despite its massive popularity, there is still a lack of theoretically justifiable Bayesian sparse PCA that is computationally scalable. A major challenge is choosing a suitable prior for the loadings matrix, as principal components are mutually orthogonal. We propose a spike and slab prior that meets this orthogonality constraint and show that the posterior enjoys both theoretical and computational advantages. Two computational algorithms, the PX-CAVI and the PX-EM algorithms, are developed. Both algorithms use parameter expansion to deal with the orthogonality constraint and to accelerate their convergence speeds. We found that the PX-CAVI algorithm has superior empirical performance than the PX-EM algorithm and two other penalty methods for sparse PCA. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. $mathsf{R}$ package $mathsf{VBsparsePCA}$ with an implementation of the algorithm is available on The Comprehensive R Archive Network.
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method to handle the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient algorithm is developed for the optimization of the penalized likelihood using majorization-minimization (MM) algorithm. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between data projections. This definition opens up more flexibility in the analysis of principal components which is useful in enhancing PCA. In this paper we introduce scales into PCA by maximizing only the sum of pairwise distances between projections for pairs of datapoints with distances within a chosen interval of values [l,u]. The resulting principal component decompositions in Multiscale PCA depend on point (l,u) on the plane and for each point we define projectors onto principal components. Cluster analysis of these projectors reveals the structures in the data at various scales. Each structure is described by the eigenvectors at the medoid point of the cluster which represent the structure. We also use the distortion of projections as a criterion for choosing an appropriate scale especially for data with outliers. This method was tested on both artificial distribution of data and real data. For data with multiscale structures, the method was able to reveal the different structures of the data and also to reduce the effect of outliers in the principal component analysis.