Do you want to publish a course? Click here

Asymptotic behavior of Toeplitz determinants with a delta function singularity

130   0   0.0 ( 0 )
 Added by Vanja Mari\\'c
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find the asymptotic behaviors of Toeplitz determinants with symbols which are a sum of two contributions: one analytical and non-zero function in an annulus around the unit circle, and the other proportional to a Dirac delta function. The formulas are found by using the Wiener-Hopf procedure. The determinants of this type are found in computing the spin-correlation functions in low-lying excited states of some integrable models, where the delta function represents a peak at the momentum of the excitation. As a concrete example of applications of our results, using the derived asymptotic formulas we compute the spin-correlation functions in the lowest energy band of the frustrated quantum XY chain in zero field, and the ground state magnetization.



rate research

Read More

201 - T. Claeys , A. Its , I. Krasovsky 2010
We obtain asymptotic expansions for Toeplitz determinants corresponding to a family of symbols depending on a parameter $t$. For $t$ positive, the symbols are regular so that the determinants obey SzegH{o}s strong limit theorem. If $t=0$, the symbol possesses a Fisher-Hartwig singularity. Letting $tto 0$ we analyze the emergence of a Fisher-Hartwig singularity and a transition between the two different types of asymptotic behavior for Toeplitz determinants. This transition is described by a special Painleve V transcendent. A particular case of our result complements the classical description of Wu, McCoy, Tracy, and Barouch of the behavior of a 2-spin correlation function for a large distance between spins in the two-dimensional Ising model as the phase transition occurs.
307 - Alfred Hucht 2021
Based on the results obtained in [Hucht, J. Phys. A: Math. Theor. 50, 065201 (2017)], we show that the partition function of the anisotropic square lattice Ising model on the $L times M$ rectangle, with open boundary conditions in both directions, is given by the determinant of a $M/2 times M/2$ Hankel matrix, that equivalently can be written as the Pfaffian of a skew-symmetric $M times M$ Toeplitz matrix. The $M-1$ independent matrix elements of both matrices are Fourier coefficients of a certain symbol function, which is given by the ratio of two characteristic polynomials. These polynomials are associated to the different directions of the system, encode the respective boundary conditions, and are directly related through the symmetry of the considered Ising model under exchange of the two directions. The results can be generalized to other boundary conditions and are well suited for the analysis of finite-size scaling functions in the critical scaling limit using SzegH{o}s theorem.
85 - Olivier Marchal 2016
In this article, we study the large $n$ asymptotic expansions of $ntimes n$ Toeplitz determinants whose symbols are indicator functions of unions of arc-intervals of the unit circle. In particular, we use an Hermitian matrix model reformulation of the problem to provide a rigorous derivation of the general form of the large $n$ expansion when the symbol is an indicator function of either a single arc-interval or several arc-intervals with a discrete rotational symmetry. Moreover, we prove that the coefficients in the expansions can be reconstructed, up to some constants, from the Eynard-Orantin topological recursion applied to some explicit spectral curves. In addition, when the symbol is an indicator function of a single arc-interval, we provide the corresponding normalizing constants using a Selberg integral and illustrate the theoretical results with numeric simulations up to order $oleft(frac{1}{n^4}right)$. We also briefly discuss the situation when the number of arc-intervals increases with $n$, as well as more general Toeplitz determinants to which we may apply the present strategy.
169 - I. Krasovsky 2010
We review the asymptotic behavior of a class of Toeplitz (as well as related Hankel and Toeplitz + Hankel) determinants which arise in integrable models and other contexts. We discuss Szego, Fisher-Hartwig asymptotics, and how a transition between them is related to the Painleve V equation. Certain Toeplitz and Hankel determinants reduce, in certain double-scaling limits, to Fredholm determinants which appear in the theory of group representations, in random matrices, random permutations and partitions. The connection to Toeplitz determinants helps to evaluate the asymptotics of related Fredholm determinants in situations of interest, and we review the corresponding results.
171 - Yu-Chen Cheng , Hong Qian , 2019
The probability distribution of a function of a subsystem conditioned on the value of the function of the whole, in the limit when the ratio of their values goes to zero, has a limit law: It equals the unconditioned marginal probability distribution weighted by an exponential factor whose exponent is uniquely determined by the condition. We apply this theorem to explain the canonical equilibrium ensemble of a system in contact with a heat reservoir. Since the theorem only requires analysis at the level of the function of the subsystem and reservoir, it is applicable even without the knowledge of the composition of the reservoir itself, which extends the applicability of the canonical ensemble. Furthermore, we generalize our theorem to a model with strong interaction that contributes an additional term to the exponent, which is beyond the typical case of approximately additive functions. This result is new in both physics and mathematics, as a theory for the Gibbs conditioning principle for strongly correlated systems. A corollary provides a precise formulation of what a temperature bath is in probabilistic term
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا