This paper studies scale-free protocol design for H2 almost state synchronization of homogeneous networks of non-introspective agents in presence of external disturbances. The necessary and sufficient conditions are provided by designing collaborative linear dynamic protocols. The design is based on localized information exchange over the same communication network, which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. Moreover, the proposed protocol is scalable and achieves H2 almost synchronization with a given arbitrary degree of accuracy for any arbitrary number of agents.
This paper studies regulated state synchronization of homogeneous networks of non-introspective agents in presence of unknown nonuniform input delays. A scale-free protocol is designed based on additional information exchange, which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The proposed protocol is scalable and achieves state synchronization for any arbitrary number of agents. Meanwhile, an upper bound for the input delay tolerance is obtained, which explicitly depends on the agent dynamics.
This paper studies regulated state synchronization of discrete-time homogeneous networks of non-introspective agents in presence of unknown non-uniform input delays. A scale free protocol is designed based on additional information exchange, which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The proposed protocol is scalable and achieves state synchronization for any arbitrary number of agents. Meanwhile, an upper bound for the input delay tolerance is obtained, which explicitly depends on the agent dynamics.
This paper studies global regulated state synchronization of homogeneous networks of non-introspective agents in presence of input saturation. We identify three classes of agent models which are neutrally stable, double-integrator, and mixed of double-integrator, single-integrator and neutrally stable dynamics. A textit{scale-free linear observer-based} protocol design methodology is developed based on localized information exchange among neighbors where the reference trajectory is given by a so-called exosystem which is assumed to be globally reachable. Our protocols do not need any knowledge about the communication network topology and the spectrum of associated Laplacian matrix. Moreover, the proposed protocol is scalable and is designed based on only knowledge of agent models and achieves synchronization for any communication graph with arbitrary number of agents.
This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The main contribution of this paper is that the proposed protocols are scale-free and achieve synchronization for arbitrary number of agents.
This paper studies scale-free protocol design for H_infty almost output and regulated output synchronization of heterogeneous multi-agent systems with linear, right-invertible, and introspective agents in presence of external disturbances. The collaborative linear protocol designs are based on localized information exchange over the same communication network, which do not require any knowledge of the directed network topology and spectrum of the associated Laplacian matrix. Moreover, the proposed scale-free protocols achieve H_infty almost synchronization with a given arbitrary degree of accuracy for any size of the network.
Zhenwei Liu
,Ali Saberi
,Anton A. Stoorvogel
.
(2020)
.
"Scale-free H2 Almost State Synchronization for Homogeneous Networks of Non-Introspective Agents"
.
Donya Nojavanzadeh
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا