No Arabic abstract
End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior. For example, Transformer, which adopts an encoder-decoder architecture. The key improvement introduced by Transformer is the utilization of self-attention instead of recurrent mechanisms, enabling both encoder and decoder to capture long-range dependencies with lower computational complexity.In this work, we propose boosting the self-attention ability with a DFSMN memory block, forming the proposed memory equipped self-attention (SAN-M) mechanism. Theoretical and empirical comparisons have been made to demonstrate the relevancy and complementarity between self-attention and the DFSMN memory block. Furthermore, the proposed SAN-M provides an efficient mechanism to integrate these two modules. We have evaluated our approach on the public AISHELL-1 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. On both tasks, SAN-M systems achieved much better performance than the self-attention based Transformer baseline system. Specially, it can achieve a CER of 6.46% on the AISHELL-1 task even without using any external LM, comfortably outperforming other state-of-the-art systems.
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a novel online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
When a sufficiently large far-field training data is presented, jointly optimizing a multichannel frontend and an end-to-end (E2E) Automatic Speech Recognition (ASR) backend shows promising results. Recent literature has shown traditional beamformer designs, such as MVDR (Minimum Variance Distortionless Response) or fixed beamformers can be successfully integrated as the frontend into an E2E ASR system with learnable parameters. In this work, we propose the self-attention channel combinator (SACC) ASR frontend, which leverages the self-attention mechanism to combine multichannel audio signals in the magnitude spectral domain. Experiments conducted on a multichannel playback test data shows that the SACC achieved a 9.3% WERR compared to a state-of-the-art fixed beamformer-based frontend, both jointly optimized with a ContextNet-based ASR backend. We also demonstrate the connection between the SACC and the traditional beamformers, and analyze the intermediate outputs of the SACC.
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for speech recognition. RNNs are replaced with self-attention blocks, which are powerful to model long-term dependencies inside sequences and able to be efficiently parallelized. Furthermore, a path-aware regularization is proposed to assist SA-T to learn alignments and improve the performance. Additionally, a chunk-flow mechanism is utilized to achieve online decoding. All experiments are conducted on a Mandarin Chinese dataset AISHELL-1. The results demonstrate that our proposed approach achieves a 21.3% relative reduction in character error rate compared with the baseline RNN-T. In addition, the SA-T with chunk-flow mechanism can perform online decoding with only a little degradation of the performance.
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM) recurrent neural networks, we propose to use self-attention via the Transformer architecture as an alternative. Our analysis shows that deep Transformer networks with high learning capacity are able to exceed performance from previous end-to-end approaches and even match the conventional hybrid systems. Moreover, we trained very deep models with up to 48 Transformer layers for both encoder and decoders combined with stochastic residual connections, which greatly improve generalizability and training efficiency. The resulting models outperform all previous end-to-end ASR approaches on the Switchboard benchmark. An ensemble of these models achieve 9.9% and 17.7% WER on Switchboard and CallHome test sets respectively. This finding brings our end-to-end models to competitive levels with previous hybrid systems. Further, with model ensembling the Transformers can outperform certain hybrid systems, which are more complicated in terms of both structure and training procedure.
The cross-speaker emotion transfer task in TTS particularly aims to synthesize speech for a target speaker with the emotion transferred from reference speech recorded by another (source) speaker. During the emotion transfer process, the identity information of the source speaker could also affect the synthesized results, resulting in the issue of speaker leakage. This paper proposes a new method with the aim to synthesize controllable emotional expressive speech and meanwhile maintain the target speakers identity in the cross-speaker emotion TTS task. The proposed method is a Tacotron2-based framework with the emotion embedding as the conditioning variable to provide emotion information. Two emotion disentangling modules are contained in our method to 1) get speaker-independent and emotion-discriminative embedding, and 2) explicitly constrain the emotion and speaker identity of synthetic speech to be that as expected. Moreover, we present an intuitive method to control the emotional strength in the synthetic speech for the target speaker. Specifically, the learned emotion embedding is adjusted with a flexible scalar value, which allows controlling the emotion strength conveyed by the embedding. Extensive experiments have been conducted on a Mandarin disjoint corpus, and the results demonstrate that the proposed method is able to synthesize reasonable emotional speech for the target speaker. Compared to the state-of-the-art reference embedding learned methods, our method gets the best performance on the cross-speaker emotion transfer task, indicating that our method achieves the new state-of-the-art performance on learning the speaker-independent emotion embedding. Furthermore, the strength ranking test and pitch trajectories plots demonstrate that the proposed method can effectively control the emotion strength, leading to prosody-diverse synthetic speech.