Anisotropic strange star with Tolman-Kuchowicz metric under $f(R,T)$ gravity


Abstract in English

In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~cite{Tolman1939,Kuchowicz1968} as $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ which are free from singularity, satisfy stability criteria and also well behaved. We calculate the value of constants $a$, $b$, $B$ and $C$ using matching conditions and the observed values of the masses and radii of known samples. To describe the strange quark matter (SQM) distribution, here we have used the phenomenological MIT bag model equation of state (EOS) where the density profile ($rho$) is related to the radial pressure ($p_r$) as $p_r(r)=frac{1}{3}(rho-4B_g)$. Here quark pressure is responsible for generation of bag constant $B_g$. Motivation behind this study lies in finding out a non-singular physically acceptable solution having various properties of strange stars. The model shows consistency with various energy conditions, TOV equation, Herreras cracking condition and also with Harrison-Zel$$dovich-Novikovs static stability criteria. Numerical values of EOS parameter and the adiabatic index also enhance the acceptability of our model.

Download