Explicit approximations for option prices via Malliavin calculus for the Stochastic Verhulst volatility model


Abstract in English

We consider explicit approximations for European put option prices within the Stochastic Verhulst model with time-dependent parameters, where the volatility process follows the dynamics $dV_t = kappa_t (theta_t - V_t) V_t dt + lambda_t V_t dB_t$. Our methodology involves writing the put option price as an expectation of a Black-Scholes formula, reparameterising the volatility process and then performing a number of expansions. The difficulties faced are computing a number of expectations induced by the expansion procedure explicitly. We do this by appealing to techniques from Malliavin calculus. Moreover, we deduce that our methodology extends to models with more general drift and diffusion coefficients for the volatility process. We obtain the explicit representation of the form of the error generated by the expansion procedure, and we provide sufficient ingredients in order to obtain a meaningful bound. Under the assumption of piecewise-constant parameters, our approximation formulas become closed-form, and moreover we are able to establish a fast calibration scheme. Furthermore, we perform a numerical sensitivity analysis to investigate the quality of our approximation formula in the Stochastic Verhulst model, and show that the errors are well within the acceptable range for application purposes.

Download