Do you want to publish a course? Click here

A Kantian Solution for the Freedom of Choice Loophole in Bell Experiments

53   0   0.0 ( 0 )
 Added by Romeu Rossi Jr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bells theorem is based on three assumptions: realism, locality, and measurement independence. The third assumption is identified by Bell as linked to the freedom of choice hypothesis. He holds that ultimately the human free will can ensure the measurement independence assumption. The incomplete experimental conditions for supporting this third assumption are known in the literature as freedom-of-choice loophole (FOCL). In a recent publication, Abellan et al [2018] address this problem and follow this same strategy embraced by Bell [2004]. Nevertheless, the possibility of human freedom of choice has been a matter of philosophical debate for more than 2000 years, and there is no consensus among philosophers on this topic. If human choice is not free, Bells solution would not be sufficient to close FOCL. Therefore, in order to support the basic assumption of this experiment, it is necessary to argue that human choice is indeed free. In this paper, we present a Kantian position on this topic and defend the view that this philosophical position is the best way to ensure that BigBell Test (Abellan et al. [2018]) can in fact close the loophole.



rate research

Read More

369 - Peter Bierhorst 2013
Recent experiments have reached detection efficiencies sufficient to close the detection loophole with photons. Both experiments ran multiple successive trials in fixed measurement configurations, rather than randomly re-setting the measurement configurations before each measurement trial. This opens a new potential loophole for a local hidden variable theory. The loophole invalidates one proposed method of statistical analysis of the experimental results, as demonstrated in this note. Therefore a different analysis will be necessary to definitively assert that these experiments are subject only to the locality loophole.
We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.
373 - G. Garbarino 2009
We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic non-maximally entangled two-qubit state and two alternative measurement bases we apply Hardys proof of non-locality without inequality and derive an Eberhard-like inequality. For an infinity of non-maximally entangled states we find that it is possible to refute local realism by requiring perfect detection efficiency for only one of the two measurements: the test is free from the detection loophole for any value of the detection efficiency corresponding to the other measurement. The maximum tolerable noise in a loophole-free test is also evaluated.
86 - H.-L. Huang , Y.-H. Luo , B. Bai 2018
Wheelers delayed-choice experiment investigates the indeterminacy of wave-particle duality and the role played by the measurement apparatus in quantum theory. Due to the inconsistency with classical physics, it has been generally believed that it is not possible to reproduce the delayed-choice experiment using a hidden variable theory. Recently, it was shown that this assumption was incorrect, and in fact Wheelers delayed-choice experiment can be explained by a causal two dimensional hidden-variable theory [R. Chaves, G. B. Lemos, and J. Pienaar, Phys. Rev. Lett. 120, 190401 (2018)]. Here, we carry out an experiment of a device-independent delayed-choice experiment using photon states that are space-like separated, and demonstrate a loophole-free version of the delayed-choice protocol that is consistent with quantum theory but inconsistent with any causal two-dimensional hidden variable theory. This salvages Wheelers thought experiment and shows that causality can be used to test quantum theory in a complementary way to the Bell and Leggett-Garg tests.
112 - Cyril Branciard 2010
A common problem in Bell type experiments is the well-known detection loophole: if the detection efficiencies are not perfect and if one simply post-selects the conclusive events, one might observe a violation of a Bell inequality, even though a local model could have explained the experimental results. In this paper, we analyze the set of all post-selected correlations that can be explained by a local model, and show that it forms a polytope, larger than the Bell local polytope. We characterize the facets of this post-selected local polytope in the CHSH scenario, where two parties have binary inputs and outcomes. Our approach gives new insights on the detection loophole problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا