Do you want to publish a course? Click here

From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models

243   0   0.0 ( 0 )
 Added by Aytunc Sahin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Submodular functions have been studied extensively in machine learning and data mining. In particular, the optimization of submodular functions over the integer lattice (integer submodular functions) has recently attracted much interest, because this domain relates naturally to many practical problem settings, such as multilabel graph cut, budget allocation and revenue maximization with discrete assignments. In contrast, the use of these functions for probabilistic modeling has received surprisingly little attention so far. In this work, we firstly propose the Generalized Multilinear Extension, a continuous DR-submodular extension for integer submodular functions. We study central properties of this extension and formulate a new probabilistic model which is defined through integer submodular functions. Then, we introduce a block-coordinate ascent algorithm to perform approximate inference for those class of models. Finally, we demonstrate its effectiveness and viability on several real-world social connection graph datasets with integer submodular objectives.



rate research

Read More

We consider the problem of approximate Bayesian inference in log-supermodular models. These models encompass regular pairwise MRFs with binary variables, but allow to capture high-order interactions, which are intractable for existing approximate inference techniques such as belief propagation, mean field, and variants. We show that a recently proposed variational approach to inference in log-supermodular models -L-FIELD- reduces to the widely-studied minimum norm problem for submodular minimization. This insight allows to leverage powerful existing tools, and hence to solve the variational problem orders of magnitude more efficiently than previously possible. We then provide another natural interpretation of L-FIELD, demonstrating that it exactly minimizes a specific type of Renyi divergence measure. This insight sheds light on the nature of the variational approximations produced by L-FIELD. Furthermore, we show how to perform parallel inference as message passing in a suitable factor graph at a linear convergence rate, without having to sum up over all the configurations of the factor. Finally, we apply our approach to a challenging image segmentation task. Our experiments confirm scalability of our approach, high quality of the marginals, and the benefit of incorporating higher-order potentials.
We present a scalable technique for upper bounding the Lipschitz constant of generative models. We relate this quantity to the maximal norm over the set of attainable vector-Jacobian products of a given generative model. We approximate this set by layerwise convex approximations using zonotopes. Our approach generalizes and improves upon prior work using zonotope transformers and we extend to Lipschitz estimation of neural networks with large output dimension. This provides efficient and tight bounds on small networks and can scale to generative models on VAE and DCGAN architectures.
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy as SAVB to implement. Experiments revealed QAVB finds a better local optimum than SAVB in terms of the variational free energy in latent Dirichlet allocation (LDA).
Fast inference of numerical model parameters from data is an important prerequisite to generate predictive models for a wide range of applications. Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive. New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space, and rely on gradient-based optimization instead of sampling, providing a more efficient approach for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating an expensive likelihood can be mitigated by replacing the true model with an offline trained surrogate model, such as neural networks. However, this approach might generate significant bias when the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model. We also propose an efficient sample weighting scheme for surrogate model training that ensures some global accuracy of the surrogate while capturing the likely regions of the parameters that yield the observed data. We demonstrate the inferential and computational superiority of NoFAS against various benchmarks, including cases where the underlying model lacks identifiability. The source code and numerical experiments used for this study are available at https://github.com/cedricwangyu/NoFAS.
254 - Issei Sato 2012
We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the alpha-divergence. We show that the CVB0 inference is composed of two different divergence projections: alpha=1 and -1. This interpretation will help shed light on CVB0 works.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا