No Arabic abstract
Composite Fermi liquid metals arise at certain special filling fractions in the quantum Hall regime and play an important role as parent states of gapped states with quantized Hall response. They have been successfully described by the Halperin-Lee-Read (HLR) theory of a Fermi surface of composite fermions coupled to a $U(1)$ gauge field with a Chern-Simons term. However, the validity of the HLR description when the microscopic system is restricted to a single Landau has not been clear. Here for the specific case of bosons at filling $ u = 1$, we build on earlier work from the 1990s to formulate a low energy description that takes the form of a {em non-commutative} field theory. This theory has a Fermi surface of composite fermions coupled to a $U(1)$ gauge field with no Chern-Simons term but with the feature that all fields are defined in a non-commutative spacetime. An approximate mapping of the long wavelength, small amplitude gauge fluctuations yields a commutative effective field theory which, remarkably, takes the HLR form but with microscopic parameters correctly determined by the interaction strength. Extensions to some other composite fermi liquids, and to other related states of matter are discussed.
We construct perturbatively controlled non-Fermi liquids in 3+1 spacetime dimensions, using mild power-law translation breaking interactions. Our mechanism balances the leading tree level effects from such gradients against quantum effects from the interaction between the Fermi surface and a critical boson. We exhibit this in a model where finite density fermions interact with a scalar field via a Yukawa coupling of the form $g(x)propto |x|^kappa$. The approximate non-Fermi liquid behavior arises in the limit of small $kappa$ and persists over an exponentially large window of scales, being cut off by the regime where the coupling becomes large, or by superconducting instabilities. The translation breaking coupling introduces anisotropic deformations of the Fermi surface depending on the direction of the gradient. An extension of this mechanism to 2+1 dimensions could provide a strongly translation-breaking, but weakly coupled non-fermi liquid, something we leave for further work.
Composite fermions have played a seminal role in understanding the quantum Hall effect, particularly the formation of a compressible `composite Fermi liquid (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer systems interlayer Coulomb repulsion can similarly generate `metallic behavior of composite fermions between layers, even if the electrons remain insulating. Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at intermediate layer separation may host such an interlayer coherent CFL, driven by exciton condensation of composite fermions. This phase has a number of remarkable properties: the presence of `bonding and `antibonding composite Fermi seas, compressible behavior with respect to symmetric currents, and fractional quantum Hall behavior in the counterflow channel. Quantum oscillations associated with the Fermi seas give rise to a new series of incompressible states at fillings nu = p/[2(p pm 1)] per layer (p an integer), which is a bilayer analogue of the Jain sequence.
Quantum Hall matrix models are simple, solvable quantum mechanical systems which capture the physics of certain fractional quantum Hall states. Recently, it was shown that the Hall viscosity can be extracted from the matrix model for Laughlin states. Here we extend this calculation to the matrix models for a class of non-Abelian quantum Hall states. These states, which were previously introduced by Blok and Wen, arise from the conformal blocks of Wess-Zumino-Witten conformal field theory models. We show that the Hall viscosity computed from the matrix model coincides with a result of Read, in which the Hall viscosity is determined in terms of the weights of primary operators of an associated conformal field theory.
Quantum many particle systems in which the kinetic energy, strong correlations, and band topology are all important pose an interesting and topical challenge. Here we introduce and study particularly simple models where all of these elements are present. We consider interacting quantum particles in two dimensions in a strong magnetic field such that the Hilbert space is restricted to the Lowest Landau Level (LLL). This is the familiar quantum Hall regime with rich physics determined by the particle filling and statistics. A periodic potential with a unit cell enclosing one flux quantum broadens the LLL into a Chern band with a finite bandwidth. The states obtained in the quantum Hall regime evolve into conducting states in the limit of large bandwidth. We study this evolution in detail for the specific case of bosons at filling factor $ u = 1$. In the quantum Hall regime the ground state at this filling is a gapped quantum hall state (the bosonic Pfaffian) which may be viewed as descending from a (bosonic) composite fermi liquid. At large bandwidth the ground state is a bosonic superfluid. We show how both phases and their evolution can be described within a single theoretical framework based on a LLL composite fermion construction. Building on our previous work on the bosonic composite fermi liquid, we show that the evolution into the superfluid can be usefully described by a non-commutative quantum field theory in a periodic potential.
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, describing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.