Performing a fully non-perturbative analysis using the tools of numerical general relativity, we demonstrate that a period of slow contraction is a `supersmoothing cosmological phase that homogenizes, isotropizes and flattens the universe both classically and quantum mechanically and can do so far more robustly and rapidly than had been realized in earlier studies.
We study the detailed process by which slow contraction smooths and flattens the universe using an improved numerical relativity code that accepts initial conditions with non-perturbative deviations from homogeneity and isotropy along two independent spatial directions. Contrary to common descriptions of the early universe, we find that the geometry first rapidly converges to an inhomogeneous, spatially-curved and anisotropic ultralocal state in which all spatial gradient contributions to the equations of motion decrease as an exponential in time to negligible values. This is followed by a second stage in which the geometry converges to a homogeneous, spatially flat and isotropic spacetime. In particular, the decay appears to follow the same history whether the entire spacetime or only parts of it are smoothed by the end of slow contraction.
We present numerical relativity simulations of cosmological scenarios in which the universe is smoothed and flattened by undergoing a phase of slow contraction and test their sensitivity to a wide range of initial conditions. Our numerical scheme enables the variation of all freely specifiable physical quantities that characterize the initial spatial hypersurface, such as the initial shear and spatial curvature contributions as well as the initial field and velocity distributions of the scalar that drives the cosmological evolution. In particular, we include initial conditions that are far outside the perturbative regime of the well-known attractor scaling solution. We complement our numerical results by analytically performing a complete dynamical systems analysis and show that the two approaches yield consistent results.
We demonstrate that the rapidity and robustness of slow contraction in homogenizing and flattening the universe found in simulations in which the initial conditions were restricted to non-perturbative variations described by a single fourier mode along only a single spatial direction are in general enhanced if the initial variations are along two spatial directions, include multiple modes, and thereby have reduced symmetry. Particularly significant are shear effects that only become possible when variations are allowed along two or more spatial dimensions. Based on the numerical results, we conjecture that the counterintuitive enhancement occurs because more degrees of freedom are activated which drive spacetime away from an unstable Kasner fixed point and towards the stable Friedmann-Robertson-Walker fixed point.
In order to apply holography and entropy relations to the whole universe, which is a gravitational and thus nonextensive system, for consistency one should use the generalized definition for the universe horizon entropy, namely Tsallis nonextensive entropy. We formulate Tsallis holographic dark energy, which is a generalization of standard holographic dark energy quantified by a new dimensionless parameter $delta$, possessing the latter as a particular sub-case. We provide a simple differential equation for the dark energy density parameter, as well as an analytical expression for its equation-of-state parameter. In this scenario the universe exhibits the usual thermal history, namely the successive sequence of matter and dark-energy epochs, before resulting in a complete dark energy domination in the far future. Additionally, the dark energy equation-of-state parameter presents a rich behavior and, according to the value of $delta$, it can be quintessence-like, phantom-like, or experience the phantom-divide crossing before or after the present time. Finally, we confront the scenario with Supernovae type Ia and Hubble parameter observational data, and we show that the agreement is very good, with $delta$ preferring a value slightly larger than its standard value 1.
We present modified cosmological scenarios that arise from the application of the gravity-thermodynamics conjecture, using the Barrow entropy instead of the usual Bekenstein-Hawking one. The former is a modification of the black hole entropy due to quantum-gravitational effects that deform the black-hole horizon by giving it an intricate, fractal structure. We extract modified cosmological equations which contain new extra terms that constitute an effective dark-energy sector, and which coincide with the usual Friedmann equations in the case where the new Barrow exponent acquires its Bekenstein-Hawking value. We present analytical expressions for the evolution of the effective dark energy density parameter, and we show that the universe undergoes through the usual matter and dark-energy epochs. Additionally, the dark-energy equation-of-state parameter is affected by the value of the Barrow deformation exponent and it can lie in the quintessence or phantom regime, or experience the phantom-divide crossing. Finally, at asymptotically large times the universe always results in the de-Sitter solution.