Do you want to publish a course? Click here

Concept Matching for Low-Resource Classification

74   0   0.0 ( 0 )
 Added by Federico Errica
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a model to tackle classification tasks in the presence of very little training data. To this aim, we approximate the notion of exact match with a theoretically sound mechanism that computes a probability of matching in the input space. Importantly, the model learns to focus on elements of the input that are relevant for the task at hand; by leveraging highlighted portions of the training data, an error boosting technique guides the learning process. In practice, it increases the error associated with relevant parts of the input by a given factor. Remarkable results on text classification tasks confirm the benefits of the proposed approach in both balanced and unbalanced cases, thus being of practical use when labeling new examples is expensive. In addition, by inspecting its weights, it is often possible to gather insights on what the model has learned.



rate research

Read More

When analyzing the genome, researchers have discovered that proteins bind to DNA based on certain patterns of the DNA sequence known as motifs. However, it is difficult to manually construct motifs due to their complexity. Recently, externally learned memory models have proven to be effective methods for reasoning over inputs and supporting sets. In this work, we present memory matching networks (MMN) for classifying DNA sequences as protein binding sites. Our model learns a memory bank of encoded motifs, which are dynamic memory modules, and then matches a new test sequence to each of the motifs to classify the sequence as a binding or nonbinding site.
Building in silico models to predict chemical properties and activities is a crucial step in drug discovery. However, limited labeled data often hinders the application of deep learning in this setting. Meanwhile advances in meta-learning have enabled state-of-the-art performances in few-shot learning benchmarks, naturally prompting the question: Can meta-learning improve deep learning performance in low-resource drug discovery projects? In this work, we assess the transferability of graph neural networks initializations learned by the Model-Agnostic Meta-Learning (MAML) algorithm - and its variants FO-MAML and ANIL - for chemical properties and activities tasks. Using the ChEMBL20 dataset to emulate low-resource settings, our benchmark shows that meta-initializations perform comparably to or outperform multi-task pre-training baselines on 16 out of 20 in-distribution tasks and on all out-of-distribution tasks, providing an average improvement in AUPRC of 11.2% and 26.9% respectively. Finally, we observe that meta-initializations consistently result in the best performing models across fine-tuning sets with $k in {16, 32, 64, 128, 256}$ instances.
284 - Chengsheng Mao , Bin Hu , Lei Chen 2018
The k-nearest-neighbor method performs classification tasks for a query sample based on the information contained in its neighborhood. Previous studies into the k-nearest-neighbor algorithm usually achieved the decision value for a class by combining the support of each sample in the neighborhood. They have generally considered the nearest neighbors separately, and potentially integral neighborhood information important for classification was lost, e.g. the distribution information. This article proposes a novel local learning method that organizes the information in the neighborhood through local distribution. In the proposed method, additional distribution information in the neighborhood is estimated and then organized; the classification decision is made based on maximum posterior probability which is estimated from the local distribution in the neighborhood. Additionally, based on the local distribution, we generate a generalized local classification form that can be effectively applied to various datasets through tuning the parameters. We use both synthetic and real datasets to evaluate the classification performance of the proposed method; the experimental results demonstrate the dimensional scalability, efficiency, effectiveness and robustness of the proposed method compared to some other state-of-the-art classifiers. The results indicate that the proposed method is effective and promising in a broad range of domains.
229 - Ping Li 2008
We develop the concept of ABC-Boost (Adaptive Base Class Boost) for multi-class classification and present ABC-MART, a concrete implementation of ABC-Boost. The original MART (Multiple Additive Regression Trees) algorithm has been very successful in large-scale applications. For binary classification, ABC-MART recovers MART. For multi-class classification, ABC-MART considerably improves MART, as evaluated on several public data sets.
Large-scale deep neural networks (DNNs) such as convolutional neural networks (CNNs) have achieved impressive performance in audio classification for their powerful capacity and strong generalization ability. However, when training a DNN model on low-resource tasks, it is usually prone to overfitting the small data and learning too much redundant information. To address this issue, we propose to use variational information bottleneck (VIB) to mitigate overfitting and suppress irrelevant information. In this work, we conduct experiments ona 4-layer CNN. However, the VIB framework is ready-to-use and could be easily utilized with many other state-of-the-art network architectures. Evaluation on a few audio datasets shows that our approach significantly outperforms baseline methods, yielding more than 5.0% improvement in terms of classification accuracy in some low-source settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا