Do you want to publish a course? Click here

Improving Disentangled Text Representation Learning with Information-Theoretic Guidance

338   0   0.0 ( 0 )
 Added by Pengyu Cheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.

rate research

Read More

Unsupervised learning of disentangled representations involves uncovering of different factors of variations that contribute to the data generation process. Total correlation penalization has been a key component in recent methods towards disentanglement. However, Kullback-Leibler (KL) divergence-based total correlation is metric-agnostic and sensitive to data samples. In this paper, we introduce Wasserstein total correlation in both variational autoencoder and Wasserstein autoencoder settings to learn disentangled latent representations. A critic is adversarially trained along with the main objective to estimate the Wasserstein total correlation term. We discuss the benefits of using Wasserstein distance over KL divergence to measure independence and conduct quantitative and qualitative experiments on several data sets. Moreover, we introduce a new metric to measure disentanglement. We show that the proposed approach has comparable performances on disentanglement with smaller sacrifices in reconstruction abilities.
Intelligent behaviour in the real-world requires the ability to acquire new knowledge from an ongoing sequence of experiences while preserving and reusing past knowledge. We propose a novel algorithm for unsupervised representation learning from piece-wise stationary visual data: Variational Autoencoder with Shared Embeddings (VASE). Based on the Minimum Description Length principle, VASE automatically detects shifts in the data distribution and allocates spare representational capacity to new knowledge, while simultaneously protecting previously learnt representations from catastrophic forgetting. Our approach encourages the learnt representations to be disentangled, which imparts a number of desirable properties: VASE can deal sensibly with ambiguous inputs, it can enhance its own representations through imagination-based exploration, and most importantly, it exhibits semantically meaningful sharing of latents between different datasets. Compared to baselines with entangled representations, our approach is able to reason beyond surface-level statistics and perform semantically meaningful cross-domain inference.
This paper challenges the common assumption that the weight $beta$, in $beta$-VAE, should be larger than $1$ in order to effectively disentangle latent factors. We demonstrate that $beta$-VAE, with $beta < 1$, can not only attain good disentanglement but also significantly improve reconstruction accuracy via dynamic control. The paper removes the inherent trade-off between reconstruction accuracy and disentanglement for $beta$-VAE. Existing methods, such as $beta$-VAE and FactorVAE, assign a large weight to the KL-divergence term in the objective function, leading to high reconstruction errors for the sake of better disentanglement. To mitigate this problem, a ControlVAE has recently been developed that dynamically tunes the KL-divergence weight in an attempt to control the trade-off to more a favorable point. However, ControlVAE fails to eliminate the conflict between the need for a large $beta$ (for disentanglement) and the need for a small $beta$. Instead, we propose DynamicVAE that maintains a different $beta$ at different stages of training, thereby decoupling disentanglement and reconstruction accuracy. In order to evolve the weight, $beta$, along a trajectory that enables such decoupling, DynamicVAE leverages a modified incremental PI (proportional-integral) controller, and employs a moving average as well as a hybrid annealing method to evolve the value of KL-divergence smoothly in a tightly controlled fashion. We theoretically prove the stability of the proposed approach. Evaluation results on three benchmark datasets demonstrate that DynamicVAE significantly improves the reconstruction accuracy while achieving disentanglement comparable to the best of existing methods. The results verify that our method can separate disentangled representation learning and reconstruction, removing the inherent tension between the two.
Many recent methods for unsupervised or self-supervised representation learning train feature extractors by maximizing an estimate of the mutual information (MI) between different views of the data. This comes with several immediate problems: For example, MI is notoriously hard to estimate, and using it as an objective for representation learning may lead to highly entangled representations due to its invariance under arbitrary invertible transformations. Nevertheless, these methods have been repeatedly shown to excel in practice. In this paper we argue, and provide empirical evidence, that the success of these methods cannot be attributed to the properties of MI alone, and that they strongly depend on the inductive bias in both the choice of feature extractor architectures and the parametrization of the employed MI estimators. Finally, we establish a connection to deep metric learning and argue that this interpretation may be a plausible explanation for the success of the recently introduced methods.
Domain adaptation aims to leverage the supervision signal of source domain to obtain an accurate model for target domain, where the labels are not available. To leverage and adapt the label information from source domain, most existing methods employ a feature extracting function and match the marginal distributions of source and target domains in a shared feature space. In this paper, from the perspective of information theory, we show that representation matching is actually an insufficient constraint on the feature space for obtaining a model with good generalization performance in target domain. We then propose variational bottleneck domain adaptation (VBDA), a new domain adaptation method which improves feature transferability by explicitly enforcing the feature extractor to ignore the task-irrelevant factors and focus on the information that is essential to the task of interest for both source and target domains. Extensive experimental results demonstrate that VBDA significantly outperforms state-of-the-art methods across three domain adaptation benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا