Do you want to publish a course? Click here

Vertex representations of quantum N-toroidal algebras for type C

106   0   0.0 ( 0 )
 Added by Naihuan Jing
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Quantum N-toroidal algebras are generalizations of quantum affine algebras and quantum toroidal algebras. In this paper we construct a level-one vertex representation of the quantum N-toroidal algebra for type C. In particular, we also obtain a level-one module of the quantum toroidal algebra for type C as a special case.



rate research

Read More

In this paper, we continue the study on toroidal vertex algebras initiated in cite{LTW}, to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_{r}(hat{frak{g}})=hat{frak{g}}otimes L_r$, where $hat{frak{g}}$ is an untwisted affine Lie algebra and $L_r=$mathbb{C}[t_{1}^{pm 1},ldots,t_{r}^{pm 1}]$. We first construct an $(r+1)$-toroidal vertex algebra $V(T,0)$ and show that the category of restricted $L_{r}(hat{frak{g}})$-modules is canonically isomorphic to that of $V(T,0)$-modules.Let $c$ denote the standard central element of $hat{frak{g}}$ and set $S_c=U(L_r(mathbb{C}c))$. We furthermore study a distinguished subalgebra of $V(T,0)$, denoted by $V(S_c,0)$. We show that (graded) simple quotient toroidal vertex algebras of $V(S_c,0)$ are parametrized by a $mathbb{Z}^r$-graded ring homomorphism $psi:S_crightarrow L_r$ such that Im$psi$ is a $mathbb{Z}^r$-graded simple $S_c$-module. Denote by $L(psi,0}$ the simple $(r+1)$-toroidal vertex algebra of $V(S_c,0)$ associated to $psi$. We determine for which $psi$, $L(psi,0)$ is an integrable $L_{r}(hat{frak{g}})$-module and we then classify irreducible $L(psi,0)$-modules for such a $psi$. For our need, we also obtain various general results.
This is a paper in a series systematically to study toroidal vertex algebras. Previously, a theory of toroidal vertex algebras and modules was developed and toroidal vertex algebras were explicitly associated to toroidal Lie algebras. In this paper, we study twisted modules for toroidal vertex algebras. More specifically, we introduce a notion of twisted module for a general toroidal vertex algebra with a finite order automorphism and we give a general construction of toroidal vertex algebras and twisted modules. We then use this construction to establish a natural association of toroidal vertex algebras and twisted modules to twisted toroidal Lie algebras. This together with some other known results implies that almost all extended affine Lie algebras can be associated to toroidal vertex algebras.
180 - Ying Xu , Ruibin Zhang 2017
Let Uq(g) be the quantum affine superalgebra associated with an affine Kac-Moody superalgebra g which belongs to the three series osp(1|2n)^(1),sl(1|2n)^(2) and osp(2|2n)^(2). We develop vertex operator constructions for the level 1 irreducible integrable highest weight representations and classify the finite dimensional irreducible representations of Uq(g). This makes essential use of the Drinfeld realisation for Uq(g), and quantum correspondences between affine Kac-Moody superalgebras, developed in earlier papers.
We construct a level $-frac{1}{2}$ vertex representation of the quantum N-toroidal algebra for type $C_n$, which is a natural generalization of the usual quantum toroidal algebra. The construction also provides a vertex representation of the quantum toroidal algebra for type $C_n$ as a by-product.
We develop a theory of toroidal vertex algebras and their modules, and we give a conceptual construction of toroidal vertex algebras and their modules. As an application, we associate toroidal vertex algebras and their modules to toroidal Lie algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا