Do you want to publish a course? Click here

Universal Voltage Fluctuations in Disordered Superconductors

100   0   0.0 ( 0 )
 Added by Aviad Frydman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Aharonov-Casher effect is the analogue of the Aharonov-Bohm effect that applies to neutral particles carrying a magnetic moment. This can be manifested by vortices or fluxons flowing in trajectories that encompass an electric charge. These have been predicted to result in a persistent voltage which fluctuates for different sample realizations. Here we show that disordered superconductors exhibit reproducible voltage fluctuation, antisymmetrical with respect to magnetic field, as a function of various parameters such as magnetic field amplitude, field orientations and gate voltage. These results are interpreted as the vortex equivalent of the universal conductance fluctuations typical of mesoscopic disordered metallic systems. We analyze the data in the framework of random matrix theory and show that the fluctuation correlation functions and curvature distributions exhibit behavior which is the fingerprint of Aronov-Casher physics. The results demonstrate the quantum nature of the vortices in highly disordered superconductors both above and below $T_c$.



rate research

Read More

Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wide range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cuprates
109 - H.A. Mook , F. Dogan 2001
Striped phases in which spin and charge separate into different regions in the material have been proposed to account for the unusual properties of the high-$T_c$ cuprate superconductors. The driving force for a striped phase is the charge distribution, which self-organizes itself into linear regions. In the highest $T_c$ materials such regions are not static but fluctuate in time. Neutrons, having no charge, can not directly observe these fluctuations but they can be observed indirectly by their effect on the phonons. Neutron scattering measurements have been made using a specialized technique to study the phonon line shapes in four crystals with oxygen doping levels varying from highly underdoped to optimal doping. It is shown that fluctuating charge stripes exist over the whole doping range, and become visible below temperatures somewhat higher than the pseudogap temperature.
Pair density wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair density wave ordered state, and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair density wave phase exhibits neither a spin-gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La$_{1.905}$Ba$_{0.095}$CuO$_4$ [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
141 - Shan Wu , Yu Song , Yu He 2020
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via inelastic X-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped ($x=0.36$) sample, which harbors a magnetically-ordered tetragonal phase, we find it hosts a short nematic correlation length $xi$ ~ 10 $AA$ and a large nematic susceptibility $chi_{rm nem}$. The optimal-doped ($x=0.55$) sample exhibits weaker phonon softening effects, indicative of both reduced $xi$ and $chi_{rm nem}$. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and Ca-based 122 systems follows a universal rate of suppression with increasing scattering rate indicative of a common pair-breaking mechanism. Extraction of standard pair-breaking parameters puts a limit of sim26 K on the maximum Tc for all transition metal-substituted 122 systems, in agreement with experimental observations, and sets a critical scattering rate of 1.5x10^14 s^-1 for the suppression of the superconducting phase. The observed critical scattering rate is much weaker than that expected for a sign-changing order parameter, providing important constraints on the nature of the superconducting gap in the 122 family of iron-based superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا