Infinite Dimensional Pathwise Volterra Processes Driven by Gaussian Noise -- Probabilistic Properties and Applications


Abstract in English

We investigate the probabilistic and analytic properties of Volterra processes constructed as pathwise integrals of deterministic kernels with respect to the Holder continuous trajectories of Hilbert-valued Gaussian processes. To this end, we extend the Volterra sewing lemma from cite{HarangTindel} to the two dimensional case, in order to construct two dimensional operator-valued Volterra integrals of Young type. We prove that the covariance operator associated to infinite dimensional Volterra processes can be represented by such a two dimensional integral, which extends the current notion of representation for such covariance operators. We then discuss a series of applications of these results, including the construction of a rough path associated to a Volterra process driven by Gaussian noise with possibly irregular covariance structures, as well as a description of the irregular covariance structure arising from Gaussian processes time-shifted along irregular trajectories. Furthermore, we consider an infinite dimensional fractional Ornstein-Uhlenbeck process driven by Gaussian noise, which can be seen as an extension of the volatility model proposed by Rosenbaum et al. in cite{ElEuchRosenbaum}.

Download