Finite-Density Massless Two-Color QCD at Isospin Roberge-Weiss Point and t Hooft Anomaly


Abstract in English

We study the phase diagram of two-flavor massless two-color QCD (QC$_2$D) under the presence of quark chemical potentials and imaginary isospin chemical potentials. At the special point of the imaginary isospin chemical potential, called the isospin Roberge--Weiss (RW) point, two-flavor QC$_2$D enjoys the $mathbb{Z}_2$ center symmetry that acts on both quark flavors and the Polyakov loop. We find a $mathbb{Z}_2$ t Hooft anomaly of this system, which involves the $mathbb{Z}_2$ center symmetry, the baryon-number symmetry, and the isospin chiral symmetry. Anomaly matching, therefore, constrains the possible phase diagram at any temperatures and quark chemical potentials at the isospin RW point, and we compare it with previous results obtained by chiral effective field theory and lattice simulations. We also point out an interesting similarity of two-flavor massless QC$_2$D with $(2+1)$d quantum anti-ferromagnetic systems.

Download