Near the transverse-field induced quantum critical point of the Ising chain, an exotic dynamic spectrum consisting of exactly eight particles was predicted, which is uniquely described by an emergent quantum integrable field theory with the symmetry of the $E_8$ Lie algebra, but rarely explored experimentally. Here we use high-resolution terahertz spectroscopy to resolve quantum spin dynamics of the quasi-one-dimensional Ising antiferromagnet BaCo$_2$V$_2$O$_8$ in an applied transverse field. By comparing to an analytical calculation of the dynamical spin correlations, we identify $E_8$ particles as well as their two-particle excitations.