No Arabic abstract
We examine several issues pertaining to statistical predictivity of the string theory landscape for weak scale supersymmetry (SUSY). We work within a predictive landscape wherein super-renormalizable terms scan while renormalizable terms do not. We require stringy naturalness wherein the likelihood of values for observables is proportional to their frequency within a fertile patch of landscape including the MSSM as low energy effective theory with a pocket-universe value for the weak scale nearby to its measured value in our universe. In the string theory landscape, it is reasonable that the soft terms enjoy a statistical power-law draw to large values, subject to the existence of atoms as we know them (atomic principle). We argue that gaugino masses, scalar masses and trilinear soft terms should each scan independently. In addition, the various scalars should scan independently of each other unless protected by some symmetry. The expected non-universality of scalar masses-- once regarded as an undesirable feature-- emerges as an asset within the context of the string landscape picture. In models such as heterotic compactifications on Calabi-Yau manifolds, where the tree-level gauge kinetic function depends only on the dilaton, then gaugino masses may scale mildly, while scalar masses and A-terms, which depend on all the moduli, may scale much more strongly leading to a landscape solution to the SUSY flavor and CP problems in spite of non-diagonal Kahler metrics. We present numerical results for Higgs and sparticle mass predictions from the landscape within the generalized mirage mediation SUSY model and discuss resulting consequences for LHC SUSY and WIMP dark matter searches.
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar Soft-Supersymmetric terms of the Lagranagian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavour mixing. The one-loop supersymmetric contributions to the leptonic flavour violating process $tau to mugamma$ are calculated in the physical basis, with slepton flavour mixed states, instead of using the well known Mass Insertion Method. We present the regions in parameter space where the muon g-2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes.
Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon^{prime} and to the CP asymmetries in the B decays to psi Ks, phi Ks, eta^{prime} Ks and Xs gamma. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of Delta mK, Delta mB and epsilon constrain the model requiring extremely heavy squark spectra.
The string theory landscape of vacua solutions provides physicists with some understanding as to the magnitude of the cosmological constant. Similar reasoning can be applied to the magnitude of the soft SUSY breaking terms in supersymmetric models of particle physics: there appears to be a statistical draw towards large soft terms which is tempered by the anthropic requirement of the weak scale lying not too far from ~100 GeV. For a mild statistical draw of m_{soft}^n with n=1 (as expected from SUSY breaking due to a single F term) then the light Higgs mass is preferred at ~125 GeV while sparticles are all pulled beyond LHC bounds. We confront a variety of LHC and WIMP dark matter search limits with the statistical expectations from a fertile patch of string theory landscape. The end result is that LHC and WIMP dark matter detectors see exactly that which is expected from the string theory landscape: a Standard Model-like Higgs boson of mass 125 GeV but as yet no sign of sparticles or WIMP dark matter. SUSY from the n=1 landscape is most likely to emerge at LHC in the soft opposite-sign dilepton plus jet plus MET channel. Multi-ton noble liquid WIMP detectors should be able to completely explore the n=1 landscape parameter space.
In a fertile patch of the string landscape which includes the Minimal Supersymmetric Standard Model (MSSM) as the low energy effective theory, rather general arguments from Douglas suggest a power-law statistical selection of soft breaking terms (m(soft)^n where n=2n_F+n_D-1 with n_F the number of hidden sector F-SUSY breaking fields and n_D the number of D-term SUSY breaking fields). The statistical draw towards large soft terms must be tempered by requiring an appropriate breakdown of electroweak (EW) symmetry with no contributions to the weak scale larger than a factor 2-5 of its measured value, lest one violates the (anthropic) atomic principle. Such a simple picture of stringy naturalness generates a light Higgs boson with mass m_h~ 125 GeV with sparticles (other than higgsinos) typically beyond LHC reach. Then we expect first and second generation matter scalars to be drawn independently to the tens of TeV regime where the upper cutoff arises from two-loop RGE terms which drive third generation soft masses towards tachyonic values. Since the upper bounds on m_0(1,2) are the same for each generation, and flavor independent, then these will be drawn toward quasi-degenerate values. This mechanism leads to a natural mixed decoupling/quasi-degeneracy solution to the SUSY flavor problem and a decoupling solution to the SUSY CP problem.
We study the supersymmetric model with $D_4 times Z_2$ lepton flavor symmetry. We evaluate soft supersymmetry breaking terms, i.e. soft slepton masses and A-terms, which are predicted in the $D_4$ flavor model. We consider constraints due to experiments of flavor changing neutral current processes.