Do you want to publish a course? Click here

Braesss paradox and programmable behaviour in microfluidic networks

211   0   0.0 ( 0 )
 Added by Daniel Case
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microfluidic systems are now being designed with precision to execute increasingly complex tasks. However, their operation often requires numerous external control devices due to the typically linear nature of microscale flows, which has hampered the development of integrated control mechanisms. We address this difficulty by designing microfluidic networks that exhibit a nonlinear relation between applied pressure and flow rate, which can be harnessed to switch the direction of internal flows solely by manipulating input and/or output pressures. We show that these networks exhibit an experimentally-supported fluid analog of Braesss paradox, in which closing an intermediate channel results in a higher, rather than lower, total flow rate. The harnessed behavior is scalable and can be used to implement flow routing with multiple switches. These findings have the potential to advance development of built-in control mechanisms in microfluidic networks, thereby facilitating the creation of portable systems that may one day be as controllable as microelectronic circuits.



rate research

Read More

The tendency for flows in microfluidic systems to behave linearly poses a challenge for designing integrated flow control schemes to carry out complex fluid processing tasks. This hindrance has led to the use of numerous external control devices to manipulate flows, thereby thwarting the potential scalability and portability of lab-on-a-chip technology. Here, we devise a microfluidic network exhibiting nonlinear flow dynamics that enable new mechanisms for on-chip flow control. This network is shown to exhibit oscillatory output patterns, bistable flow states, hysteresis, signal amplification, and negative-conductance transitions, all without reliance on dedicated external control hardware, movable parts, flexible components, or oscillatory inputs. These dynamics arise from nonlinear fluid inertia effects in laminar flows that we amplify and harness through the design of the network geometry. We suggest that these results, which are supported by fluid dynamical simulations and theoretical modeling, have the potential to inspire development of new built-in control capabilities, such as on-chip timing and synchronized flow patterns.
200 - M. Schindler , A. Ajdari 2007
We propose a simple model to analyze the traffic of droplets in microfluidic ``dual networks. Such functional networks which consist of two types of channels, namely those accessible or forbidden to droplets, often display a complex behavior characteristic of dynamical systems. By focusing on three recently proposed configurations, we offer an explanation for their remarkable behavior. Additionally, the model allows us to predict the behavior in different parameter regimes. A verification will clarify fundamental issues, such as the network symmetry, the role of the driving conditions, and of the occurrence of reversible behavior. The model lends itself to a fast numerical implementation, thus can help designing devices, identifying parameter windows where the behavior is sufficiently robust for a devices to be practically useful, and exploring new functionalities.
Facing the threats of infectious diseases, we take various actions to protect ourselves, but few studies considered an evolving system with competing strategies. In view of that, we propose an evolutionary epidemic model coupled with human behaviors, where individuals have three strategies: vaccination, self-protection and laissez faire, and could adjust their strategies according to their neighbors strategies and payoffs at the beginning of each new season of epidemic spreading. We found a counter-intuitive phenomenon analogous to the well-known emph{Braesss Paradox}, namely a better condition may lead to worse performance. Specifically speaking, increasing the successful rate of self-protection does not necessarily reduce the epidemic size or improve the system payoff. This phenomenon is insensitive to the network topologies, and can be well explained by a mean-field approximation. Our study demonstrates an important fact that a better condition for individuals may yield a worse outcome for the society.
We study microfluidic self digitization in Hele-Shaw cells using pancake droplets anchored to surface tension traps. We show that above a critical flow rate, large anchored droplets break up to form two daughter droplets, one of which remains in the anchor. Below the critical flow velocity for breakup the shape of the anchored drop is given by an elastica equation that depends on the capillary number of the outer fluid. As the velocity crosses the critical value, the equation stops admitting a solution that satisfies the boundary conditions; the drop breaks up in spite of the neck still having finite width. A similar breaking event also takes place between the holes of an array of anchors, which we use to produce a 2D array of stationary drops in situ.
We investigate the migration of particles of different geometrical shapes and sizes in a scaled-up model of a gravity-driven deterministic lateral displacement (g-DLD) device. Specifically, particles move through a square array of cylindrical posts as they settle under the action of gravity. We performed experiments that cover a broad range of orientations of the driving force (gravity) with respect to the columns (or rows) in the square array of posts. We observe that as the forcing angle increases particles initially locked to move parallel to the columns in the array begin to move across the columns of obstacles and migrate at angles different from zero. We measure the probability that a particle would move across a column of obstacles, and define the critical angle {theta}c as the forcing angle at which this probability is 1/2. We show that critical angle depends both on particle size and shape, thus enabling both size- and shape-based separations. Finally, we show that using the diameter of the inscribed sphere as the characteristic size of the particles the corresponding critical angle becomes independent of particle shape and the relationship between them is linear. This linear and possibly universal behavior of the critical angle as a function of the diameter of the inscribed sphere could provide guidance in the design and optimization of g-DLD devices used for shape-based separation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا