Following the TraCS of exoplanets with Pan-Planets: Wendelstein-1b and Wendelstein-2b


Abstract in English

Hot Jupiters seem to get rarer with decreasing stellar mass. The goal of the Pan-Planets transit survey was the detection of such planets and a statistical characterization of their frequency. Here, we announce the discovery and validation of two planets found in that survey, Wendelstein-1b and Wendelstein-2b, which are two short-period hot Jupiters that orbit late K host stars. We validated them both by the traditional method of radial velocity measurements with the HIgh Resolution Echelle Spectrometer (HIRES) and the Habitable-zone Planet Finder (HPF) instruments and then by their Transit Color Signature (TraCS). We observed the targets in the wavelength range of $4000 - 24000$ Angstrom and performed a simultaneous multiband transit fit and additionally determined their thermal emission via secondary eclipse observations. Wendelstein-1b is a hot Jupiter with a radius of $1.0314_{-0.0061}^{+0.0061}$ $R_J$ and mass of $0.592_{-0.129}^{+0.165}$ $M_J$, orbiting a K7V dwarf star at a period of $2.66$ d, and has an estimated surface temperature of about $1727_{-90}^{+78}$ K. Wendelstein-2b is a hot Jupiter with a radius of $1.1592_{-0.0210}^{+0.0204}$ $R_J$ and a mass of $0.731_{-0.311}^{+0.541}$ $M_J$, orbiting a K6V dwarf star at a period of $1.75$ d, and has an estimated surface temperature of about $1852_{-140}^{+120}$ K. With this, we demonstrate that multiband photometry is an effective way of validating transiting exoplanets, in particular for fainter targets since radial velocity (RV) follow-up becomes more and more costly for those targets.

Download