No Arabic abstract
We study star cluster formation in various environments with different metallicities and column densities by performing a suite of three-dimensional radiation hydrodynamics simulations. We find that the photoionization feedback from massive stars controls the star formation efficiency (SFE) in a star-forming cloud, and its impact sensitively depends on the gas metallicity $Z$ and initial cloud surface density $Sigma$. At $Z=1~Z_{odot}$, SFE increases as a power law from 0.03 at $Sigma = 10~M_{odot}{rm pc^{-2}}$ to 0.3 at $Sigma = 300~M_{odot}{rm pc^{-2}}$. In low-metallicity cases $10^{-2}- 10^{-1} Z_{odot}$, star clusters form from atomic warm gases because the molecule formation time is not short enough with respect to the cooling or dynamical time. In addition, the whole cloud is disrupted more easily by expanding H{sc ii} bubbles which have higher temperature owing to less efficient cooling. With smaller dust attenuation, the ionizing radiation feedback from nearby massive stars is stronger and terminate star formation in dense clumps. These effects result in inefficient star formation in low-metallicity environments: the SFE drops by a factor of $sim 3$ at $Z=10^{-2}~Z_{odot}$ compared to the results for $Z=1~Z_{odot}$, regardless of $Sigma$. Newborn star clusters are also gravitationally less bound. We further develop a new semi-analytical model that can reproduce the simulation results well, particularly the observed dependencies of the SFEs on the cloud surface densities and metallicities.
The process of radiative feedback in Giant Molecular Clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early ($lesssim$5 Myr) cluster formation in GMCs having masses that range from 10$^{4-6}$ M$_{odot}$ using the FLASH code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50% relative to hydrodynamic simulations. Two models in particular --- 5$times$10$^4$ and 10$^5$ M$_{odot}$ --- show the largest suppression of the cluster formation efficiency, corresponding to a factor of $sim$2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, M$_{cl,max}$, formed in a GMC of mass M$_{GMC}$; M$_{cl,max}propto$ M$_{GMC}^{0.81}$. This scaling result suggests that young globular clusters at the necessary scale of $10^6 M_{odot}$ form within host GMCs of masses near $sim 5 times 10^7 M_{odot}$. We compare simulated cluster mass distributions to the observed embedded cluster mass function ($dlog(N)/dlog(M) propto M^{beta}$ where $beta$ = -1) and find good agreement ($beta$ = -0.99$pm$0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16-21%, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.
Radiative feedback is an important consequence of cluster formation in Giant Molecular Clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not been fully explored in different GMC environments. We present a suite of simulations which explore how the initial gravitational boundedness, and radiative feedback, affect cluster formation. We model the early evolution ($<$ 5 Myr) of turbulent, 10$^6$ M$_{odot}$ clouds with virial parameters ranging from 0.5 to 5. To model cluster formation, we use cluster sink particles, coupled to a raytracing scheme, and a custom subgrid model which populates a cluster via sampling an IMF with an efficiency of 20% per freefall time. We find that radiative feedback only decreases the cluster particle formation efficiency by a few percent. The initial virial parameter plays a much stronger role in limiting cluster formation, with a spread of cluster formation efficiencies of 37% to 71% for the most unbound to the most bound model. The total number of clusters increases while the maximum mass cluster decreases with an increasing initial virial parameter, resulting in steeper mass distributions. The star formation rates in our cluster particles are initially consistent with observations but rise to higher values at late times. This suggests that radiative feedback alone is not responsible for dispersing a GMC over the first 5 Myr of cluster formation.
Molecular clouds are supported by turbulence and magnetic fields, but quantifying their influence on cloud lifecycle and star formation efficiency (SFE) remains an open question. We perform radiation MHD simulations of star-forming giant molecular clouds (GMCs) with UV radiation feedback, in which the propagation of UV radiation via ray-tracing is coupled to hydrogen photochemistry. We consider 10 GMC models that vary in either initial virial parameter ($1lealpha_{v,0}le 5$) or dimensionless mass-to-magnetic flux ratio (0.5-8 and $infty$); the initial mass $10^5M_{odot}$ and radius 20pc are fixed. Each model is run with five different initial turbulence realizations. In most models, the duration of star formation and the timescale for molecular gas removal (primarily by photoevaporation) are 4-8Myr. Both the final SFE ($epsilon_*$) and time-averaged SFE per freefall time ($epsilon_{ff}$) are reduced by strong turbulence and magnetic fields. The median $epsilon_*$ ranges between 2.1% and 9.5%. The median $epsilon_{ff}$ ranges between 1.0% and 8.0% and anticorrelates with $alpha_{v,0}$, in qualitative agreement with previous analytic theory and simulations. However, the time-dependent $alpha_{v}(t)$ and $epsilon_{ff,obs}(t)$ based on instantaneous gas properties and cluster luminosity are positively correlated due to rapid evolution, making observational validation of star formation theory difficult. Our median $epsilon_{ff,obs}(t)approx$ 2% is similar to observed values. We show that the traditional virial parameter estimates the true gravitational boundedness within a factor of 2 on average, but neglect of magnetic support and velocity anisotropy can sometimes produce large departures. Magnetically subcritical GMCs are unlikely to represent sites of massive star formation given their unrealistic columnar outflows, prolonged lifetime, and low escape fraction of radiation.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components have been discussed as the mechanism which triggered the massive star formation in W51A. In this paper, we report an observational study of the molecular clouds in W51A using the new 12CO, 13CO, and C18O (J=1-0) data covering a 1.4x1.0 degree region of W51A obtained with the Nobeyama 45-m telescope at 20 resolution. Our CO data resolved the four discrete velocity clouds at 50, 56, 60, and 68 km/s with sizes and masses of ~30 pc and 1.0-1.9x10^5 Msun. Toward the central part of the HII region complex G49.5-0.4, we identified four C18O clumps having sizes of ~1 pc and column densities of higher than 10^23 cm^-3, which are each embedded within the four velocity clouds. These four clumps are distributed close to each others within a small distance of 5 pc, showing a complementary distribution on the sky. In the position-velocity diagram, these clumps are connected with each others by bridge features with intermediate intensities. The high intensity ratios of 13CO (J=3-2/J=1-0) also indicates that these four clouds are associated with the HII regions. We also found these features in other HII regions in W51A. The timescales of the collisions are estimated to be several 0.1 Myrs as a crossing time of the clouds, which are consistent with the ages of the HII regions measured from the size of the HII regions in the 21 cm continuum emissions. We discuss the cloud-cloud collision scenario and massive star formation in W51A by comparing with the recent observational and theoretical studies of cloud-cloud collision.
We present SOFIA-upGREAT observations of [CII] emission of Infrared Dark Cloud (IRDC) G035.39-00.33, designed to trace its atomic gas envelope and thus test models of the origins of such clouds. Several velocity components of [CII] emission are detected, tracing structures that are at a wide range of distances in the Galactic plane. We find a main component that is likely associated with the IRDC and its immediate surroundings. This strongest emission component has a velocity similar to that of the $^{13}$CO(2-1) emission of the IRDC, but offset by $sim3:{rm km:s}^{-1}$ and with a larger velocity width of $sim9:{rm km:s}^{-1}$. The spatial distribution of the [CII] emission of this component is also offset predominantly to one side of the dense filamentary structure of the IRDC. The CII column density is estimated to be of the order of $sim10^{17}-10^{18},{rm cm}^{-2}$. We compare these results to the [CII] emission from numerical simulations of magnetized, dense gas filaments formed from giant molecular cloud (GMC) collisions, finding similar spatial and kinematic offsets. These observations and modeling of [CII] add further to the evidence that IRDC G035.39-00.33 has been formed by a process of GMC-GMC collision, which may thus be an important mechanism for initiating star cluster formation.