We investigate the quantum transport of anyons in one space dimension. After establishing some universal features of non-equilibrium systems in contact with two heat reservoirs in a generalised Gibbs state, we focus on the abelian anyon solution of the Tomonaga-Luttinger model possessing axial-vector duality. In this context a non-equilibrium representation of the physical observables is constructed, which is the basic tool for a systematic study of the anyon particle and heat transport. We determine the associated Lorentz number and describe explicitly the deviation from the standard Wiedemann-Franz law induced by the interaction and the anyon statistics. The quantum fluctuations generated by the electric and helical currents are investigated and the dependence of the relative noise power on the statistical parameter is established.