We study the class of analytic binary relations on Polish spaces, compared with the notions of continuous reducibility or injective continuous reducibility. In particular, we characterize when a locally countable Borel relation is $Sigma$ 0 $xi$ (or $Pi$ 0 $xi$), when $xi$ $ge$ 3, by providing a concrete finite antichain basis. We give a similar characterization for arbitrary relations when $xi$ = 1. When $xi$ = 2, we provide a concrete antichain of size continuum made of locally countable Borel relations minimal among non-$Sigma$ 0 2 (or non-$Pi$ 0 2) relations. The proof of this last result allows us to strengthen a result due to Baumgartner in topological Ramsey theory on the space of rational numbers. We prove that positive results hold when $xi$ = 2 in the acyclic case. We give a general positive result in the non-necessarily locally countable case, with another suitable acyclicity assumption. We provide a concrete finite antichain basis for the class of uncountable analytic relations. Finally, we deduce from our positive results some antichain basis for graphs, of small cardinality (most of the time 1 or 2).