Do you want to publish a course? Click here

Chat as Expected: Learning to Manipulate Black-box Neural Dialogue Models

148   0   0.0 ( 0 )
 Added by Haochen Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, neural network based dialogue systems have become ubiquitous in our increasingly digitalized society. However, due to their inherent opaqueness, some recently raised concerns about using neural models are starting to be taken seriously. In fact, intentional or unintentional behaviors could lead to a dialogue system to generate inappropriate responses. Thus, in this paper, we investigate whether we can learn to craft input sentences that result in a black-box neural dialogue model being manipulated into having its outputs contain target words or match target sentences. We propose a reinforcement learning based model that can generate such desired inputs automatically. Extensive experiments on a popular well-trained state-of-the-art neural dialogue model show that our method can successfully seek out desired inputs that lead to the target outputs in a considerable portion of cases. Consequently, our work reveals the potential of neural dialogue models to be manipulated, which inspires and opens the door towards developing strategies to defend them.



rate research

Read More

Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English-German and English-Chinese) verify the effectiveness and superiority of the proposed approach.
Neural dialogue response generation has gained much popularity in recent years. Maximum Likelihood Estimation (MLE) objective is widely adopted in existing dialogue model learning. However, models trained with MLE objective function are plagued by the low-diversity issue when it comes to the open-domain conversational setting. Inspired by the observation that humans not only learn from the positive signals but also benefit from correcting behaviors of undesirable actions, in this work, we introduce contrastive learning into dialogue generation, where the model explicitly perceives the difference between the well-chosen positive and negative utterances. Specifically, we employ a pretrained baseline model as a reference. During contrastive learning, the target dialogue model is trained to give higher conditional probabilities for the positive samples, and lower conditional probabilities for those negative samples, compared to the reference model. To manage the multi-mapping relations prevailed in human conversation, we augment contrastive dialogue learning with group-wise dual sampling. Extensive experimental results show that the proposed group-wise contrastive learning framework is suited for training a wide range of neural dialogue generation models with very favorable performance over the baseline training approaches.
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications can be compromised are not well-understood since neural networks are usually viewed as a black box. In this paper, we introduce a highly practical backdoor attack achieved with a set of reverse-engineering techniques over compiled deep learning models. The core of the attack is a neural conditional branch constructed with a trigger detector and several operators and injected into the victim model as a malicious payload. The attack is effective as the conditional logic can be flexibly customized by the attacker, and scalable as it does not require any prior knowledge from the original model. We evaluated the attack effectiveness using 5 state-of-the-art deep learning models and real-world samples collected from 30 users. The results demonstrated that the injected backdoor can be triggered with a success rate of 93.5%, while only brought less than 2ms latency overhead and no more than 1.4% accuracy decrease. We further conducted an empirical study on real-world mobile deep learning apps collected from Google Play. We found 54 apps that were vulnerable to our attack, including popular and security-critical ones. The results call for the awareness of deep learning application developers and auditors to enhance the protection of deployed models.
Current state-of-the-art neural dialogue models learn from human conversations following the data-driven paradigm. As such, a reliable training corpus is the crux of building a robust and well-behaved dialogue model. However, due to the open-ended nature of human conversations, the quality of user-generated training data varies greatly, and effective training samples are typically insufficient while noisy samples frequently appear. This impedes the learning of those data-driven neural dialogue models. Therefore, effective dialogue learning requires not only more reliable learning samples, but also fewer noisy samples. In this paper, we propose a data manipulation framework to proactively reshape the data distribution towards reliable samples by augmenting and highlighting effective learning samples as well as reducing the effect of inefficient samples simultaneously. In particular, the data manipulation model selectively augments the training samples and assigns an importance weight to each instance to reform the training data. Note that, the proposed data manipulation framework is fully data-driven and learnable. It not only manipulates training samples to optimize the dialogue generation model, but also learns to increase its manipulation skills through gradient descent with validation samples. Extensive experiments show that our framework can improve the dialogue generation performance with respect to various automatic evaluation metrics and human judgments.
87 - Andrea Madotto 2021
This thesis investigates the controllability of deep learning-based, end-to-end, generative dialogue systems in both task-oriented and chit-chat scenarios. In particular, we study the different aspects of controlling generative dialogue systems, including controlling styles and topics and continuously adding and combining dialogue skills. In the three decades since the first dialogue system was commercialized, the basic architecture of such systems has remained substantially unchanged, consisting of four pipelined basic components, namely, natural language understanding (NLU), dialogue state tracking (DST), a dialogue manager (DM) and natural language generation (NLG). The dialogue manager, which is the critical component of the modularized system, controls the response content and style. This module is usually programmed by rules and is designed to be highly controllable and easily extendable. With the emergence of powerful deep learning architectures, end-to-end generative dialogue systems have been proposed to optimize overall system performance and simplify training. However, these systems cannot be easily controlled and extended as the modularized dialogue manager can. This is because a single neural system is used, which is usually a large pre-trained language model (e.g., GPT-2), and thus it is hard to surgically change desirable attributes (e.g., style, topics, etc.). More importantly, uncontrollable dialogue systems can generate offensive and even toxic responses. Therefore, in this thesis, we study controllable methods for end-to-end generative dialogue systems in task-oriented and chit-chat scenarios. Throughout the chapters, we describe 1) how to control the style and topics of chit-chat models, 2) how to continuously control and extend task-oriented dialogue systems, and 3) how to compose and control multi-skill dialogue models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا