No Arabic abstract
We analyze the spectral properties of a $d$-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude $phi$ but random orientation through the faces of the hypercube. The HC model, which also can be written as a model of $2d$ interacting Majorana fermions, has a spectral flow that is reminiscent of the Maldacena-Qi (MQ) model, and its spectrum at $phi=0$, actually coincides with the coupling term of the MQ model. As was already shown by Parisi, at leading order in $1/d$ , the spectral density of this model is given by the density function of the Q-Hermite polynomials, which is also the spectral density of the double-scaled Sachdev-Ye-Kitaev model. Parisi demonstrated this by mapping the moments of the HC model to $Q$-weighted sums on chord diagrams. We point out that the subleading moments of the HC model can also be mapped to weighted sums on chord diagrams, in a manner that descends from the leading moments. The HC model has a magnetic inversion symmetry that depends on both the magnitude and the orientation of the magnetic flux through the faces of the hypercube. The spectrum for fixed quantum number of this symmetry exhibits a transition from regular spectra at $phi=0$ to chaotic spectra with spectral statistics given by the Gaussian Unitary Ensembles (GUE) for larger values of $phi$. For small magnetic flux, the ground state is gapped and is close to a Thermofield Double (TFD) state.
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quantitative analysis of the nonequilibrium chaos assumption, and compute the time dependence of main chaos indicators - Lyapunov exponents and deviation vector distributions. We find a slowing down of chaotic dynamics, which does not cross over into regular dynamics up to the largest observed time scales, still being fast enough to allow for a thermalization of the spreading wave packet. Strongly localized chaotic spots meander through the system as time evolves. Our findings confirm for the first time that nonequilibrium chaos and phase decoherence persist, fueling the prediction of a complete delocalization.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [EPL {bf 91}, 30001 (2010)] and consider strong disorder, which favors Anderson localization. We probe the limit of infinite disorder strength and study Frohlich-Spencer-Wayne models. We find that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with spatially inhomogeneous nonlinearity which give further support to our findings and conclusions.
We compute the transport and chaos properties of lattices of quantum Sachdev-Ye-Kitaev islands coupled by single fermion hopping, and with the islands coupled to a large number of local, low energy phonons. We find two distinct regimes of linear-in-temperature ($T$) resistivity, and describe the crossover between them. When the electron-phonon coupling is weak, we obtain the `incoherent metal regime, where there is near-maximal chaos with front propagation at a butterfly velocity $v_B$, and the associated diffusivity $D_{rm chaos} = v_B^2/(2 pi T)$ closely tracks the energy diffusivity. On the other hand, when the electron-phonon coupling is strong, and the linear resistivity is largely due to near-elastic scattering of electrons off nearly free phonons, we find that the chaos is far from maximal and spreads diffusively. We also describe the crossovers to low $T$ regimes where the electronic quasiparticles are well defined.
We re-examine attempts to study the many-body localization transition using measures that are physically natural on the ergodic/quantum chaotic regime of the phase diagram. Using simple scaling arguments and an analysis of various models for which rigorous results are available, we find that these measures can be particularly adversely affected by the strong finite-size effects observed in nearly all numerical studies of many-body localization. This severely impacts their utility in probing the transition and the localized phase. In light of this analysis, we argue that a recent study [v{S}untajs et al., arXiv:1905.06345] of the behavior of the Thouless energy and level repulsion in disordered spin chains likely reaches misleading conclusions, in particular as to the absence of MBL as a true phase of matter.