Designing morphology of separated phases in multicomponent liquid mixtures


Abstract in English

Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to the function of the separated mixture, yet it is unclear what determines morphology when multiple phases are present. We developed a graph theory approach to predict the topology of coexisting phases from a given set of surface energies (forward problem), enumerate all topologically distinct morphologies, and reverse engineer conditions for surface energies that produce the target morphology (inverse problem).

Download