Do you want to publish a course? Click here

Law of large numbers and fluctuations in the sub-critical and $L^2$ regions for SHE and KPZ equation in dimension $dgeq 3$

83   0   0.0 ( 0 )
 Added by Cl\\'ement Cosco
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

There have been recently several works studying the regularized stochastic heat equation (SHE) and Kardar-Parisi-Zhang (KPZ) equation in dimension $dgeq 3$ as the smoothing parameter is switched off, but most of the results did not hold in the full temperature regions where they should. Inspired by martingale techniques coming from the directed polymers literature, we first extend the law of large numbers for SHE obtained in [MSZ16] to the full weak disorder region of the associated polymer model and to more general initial conditions. We further extend the Edwards-Wilkinson regime of the SHE and KPZ equation studied in [GRZ18,MU17,DGRZ20] to the full $L^2$-region, along with multidimensional convergence and general initial conditions for the KPZ equation (and SHE), which were not proven before. To do so, we rely on a martingale CLT combined with a refinement of the local limit theorem for polymers.



rate research

Read More

We consider the discrete directed polymer model with i.i.d. environment and we study the fluctuations of the tail $n^{(d-2)/4}(W_infty - W_n)$ of the normalized partition function. It was proven by Comets and Liu, that for sufficiently high temperature, the fluctuations converge in distribution towards the product of the limiting partition function and an independent Gaussian random variable. We extend the result to the whole $L^2$-region, which is predicted to be the maximal high-temperature region where the Gaussian fluctuations should occur under the considered scaling. To do so, we manage to avoid the heavy 4th-moment computation and instead rely on the local limit theorem for polymers and homogenization.
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that in dimensions $dgeq 3$ the arboreal gas undergoes a percolation phase transition. This contrasts with the case of $d=2$ where all trees are finite for all $beta>0$. The starting point for our analysis is an exact relationship between the arboreal gas and a fermionic non-linear sigma model with target space $mathbb{H}^{0|2}$. This latter model can be thought of as the $0$-state Potts model, with the arboreal gas being its random cluster representation. Unlike the $q>0$ Potts models, the $mathbb{H}^{0|2}$ model has continuous symmetries. By combining a renormalisation group analysis with Ward identities we prove that this symmetry is spontaneously broken at low temperatures. In terms of the arboreal gas, this symmetry breaking translates into the existence of infinite trees in the thermodynamic limit. Our analysis also establishes massless free field correlations at low temperatures and the existence of a macroscopic tree on finite tori.
We prove a strong law of large numbers for the Newtonian capacity of a Wiener sausage in the critical dimension four.
We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda | abla h(t,x)|^2 +sqrt{D}, eta(t,x), qquad (t,x)inmathbb{R}_+timesmathbb{R}^d $$ in $dge 3$ dimensions in the perturbative regime, i.e. for $lambda>0$ small enough and a smooth, bounded, integrable initial condition $h_0=h(t=0,cdot)$. The forcing term $eta$ in the right-hand side is a regularized space-time white noise. The exponential of $h$ -- its so-called Cole-Hopf transform -- is known to satisfy a linear PDE with multiplicative noise. We prove a large-scale diffusive limit for the solution, in particular a time-integrated heat-kernel behavior for the covariance in a parabolic scaling. The proof is based on a rigorous implementation of K. Wilsons renormalization group scheme. A double cluster/momentum-decoupling expansion allows for perturbative estimates of the bare resolvent of the Cole-Hopf linear PDE in the small-field region where the noise is not too large, following the broad lines of Iagolnitzer-Magnen. Standard large deviation estimates for $eta$ make it possible to extend the above estimates to the large-field region. Finally, we show, by resumming all the by-products of the expansion, that the solution $h$ may be written in the large-scale limit (after a suitable Galilei transformation) as a small perturbation of the solution of the underlying linear Edwards-Wilkinson model ($lambda=0$) with renormalized coefficients $ u_{eff}= u+O(lambda^2),D_{eff}=D+O(lambda^2)$.
The solution of Kardar-Parisi-Zhang equation (KPZ equation) is solved formally via Cole-Hopf transformation $h=log u$, where $u$ is the solution of multiplicative stochastic heat equation(SHE). In earlier works by Chatterjee and Dunlap, Caravenna, Sun, and Zygouras, and Gu, they consider the solution of two dimensional KPZ equation via the solution $u_varepsilon$ of SHE with flat initial condition and with noise which is mollified in space on scale in $varepsilon$ and its strength is weakened as $beta_varepsilon=hat{beta} sqrt{frac{2pi varepsilon}{-log varepsilon}}$, and they prove that when $hat{beta}in (0,1)$, $frac{1}{beta_varepsilon}(log u_varepsilon-mathbb{E}[log u_varepsilon])$ converges in distribution to a solution of Edward-Wilkinson model as a random field. In this paper, we consider a stochastic heat equation $u_varepsilon$ with general initial condition $u_0$ and its transformation $F(u_varepsilon)$ for $F$ in a class of functions $mathfrak{F}$, which contains $F(x)=x^p$ ($0<pleq 1$) and $F(x)=log x$. Then, we prove that $frac{1}{beta_varepsilon}(F(u_varepsilon(t,x))-mathbb{E}[F(u_varepsilon(t,x))])$ converges in distribution to Gaussian random variables jointly in finitely many $Fin mathfrak{F}$, $t$, and $u_0$. In particular, we obtain the fluctuations of solutions of stochastic heat equations and KPZ equations jointly converge to solutions of SPDEs which depends on $u_0$. Our main tools are It^os formula, the martingale central limit theorem, and the homogenization argument as in the works by Cosco and the authors. To this end, we also prove the local limit theorem for the partition function of intermediate $2d$-directed polymers
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا