Do you want to publish a course? Click here

Another model for the regularized big bang

219   0   0.0 ( 0 )
 Added by Frans Klinkhamer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a gravitational model with a Brans-Dicke-type scalar field having, in the would-be action, a wrong-sign kinetic term and a quartic interaction term. In a cosmological context, we obtain, depending on the boundary conditions, either the Friedmann solution or a kink-bounce solution. The expanding-universe Friedmann solution has a big bang curvature singularity, whereas the kink-bounce solution has a nonsingular bouncing behavior of the cosmic scale factor. The bounce occurs precisely at the moment when the scalar field of the kink-type configuration goes through zero, making for a vanishing effective gravitational coupling.



rate research

Read More

74 - Z.L. Wang 2021
We investigate a particular regularization of big bang singularity, which remains within the domain of 4-dimensional general relativity but allowing for degenerate metrics. We study the geodesics and geodesic congruences in the modified Friedmann-Lema^itre-Robertson-Walker universe. In particular, we calculate the expansion of timelike and null geodesic congruences. Based on these results, we also briefly discuss the cosmological singularity theorems.
68 - Hideki Ishihara 2001
Big bang of the Friedmann-Robertson-Walker (FRW)-brane universe is studied. In contrast to the spacelike initial singularity of the usual FRW universe, the initial singularity of the FRW-brane universe is point-like from the viewpoint of causality including gravitational waves propagating in the bulk. Existence of null singularities (seam singuralities) is also shown in the flat and open FRW-brane universe models.
By carrying out a systematic investigation of linear, test quantum fields $hat{phi}(x)$ in cosmological space-times, we show that $hat{phi}(x)$ remain well-defined across the big bang as operator valued distributions in a large class of Friedmann, Lema^itre, Robertson, Walker space-times, including radiation and dust filled universes. In particular, the expectation values $langle hat{phi}(x),hat{phi}(x)rangle$ are well-defined bi-distributions in the extended space-time in spite of the big bang singularity. Interestingly, correlations between fields evaluated at spatially and temporally separated points exhibit an asymmetry that is reminiscent of the Belinskii, Khalatnikov, Lifshitz behavior. The renormalized products of fields $langle hat{phi}^2(x)rangle_{rm ren}$ and $langle hat{T}_{ab}(x) rangle_{rm ren}$ also remain well-defined as distributions. Conformal coupling is not necessary for these considerations to hold. Thus, when probed with observables associated with quantum fields, the big bang (and the big crunch) singularities are quite harmless.
93 - M. Gasperini 2017
The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of growing string coupling. The extension towards the past of such a phase is not limited in time by the dynamical backreaction of the quantum perturbations of the cosmological geometry and of its sources. A viable, slightly red spectrum of scalar perturbations can thus be the output of an asymptotic, perturbative regime which is well compatible with an initial string-vacuum state satisfying the postulate of Asymptotic Past Triviality.
100 - F.R. Klinkhamer 2020
The large-$N$ master field of the Lorentzian IIB matrix model can, in principle, give rise to a particular degenerate metric relevant to a regularized big bang. The length parameter of this degenerate metric is then calculated in terms of the IIB-matrix-model length scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا