Do you want to publish a course? Click here

Milnor-Witt motivic cohomology of complements of hyperplane arrangements

161   0   0.0 ( 0 )
 Added by Keyao Peng
 Publication date 2020
  fields
and research's language is English
 Authors Keyao Peng




Ask ChatGPT about the research

In this paper, we compute the (total) Milnor-Witt motivic cohomology of the complement of a hyperplane arrangement in an affine space.



rate research

Read More

180 - Takuro Abe 2020
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dimensions of hyperplane arrangements. They are generalizations of the free arrangement cases, that can be regarded as the special case of our result when the projective dimension is zero. The keys to prove them are several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, that is combinatorial when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is comibinatorially determined.
We introduce the package textbf{arrangements} for the software CoCoA. This package provides a data structure and the necessary methods for working with hyperplane arrangements. In particular, the package implements methods to enumerate many commonly studied classes of arrangements, perform operations on them, and calculate various invariants associated to them.
We prove that the $infty$-category of motivic spectra satisfies Milnor excision: if $Ato B$ is a morphism of commutative rings sending an ideal $Isubset A$ isomorphically onto an ideal of $B$, then a motivic spectrum over $A$ is equivalent to a pair of motivic spectra over $B$ and $A/I$ that are identified over $B/IB$. Consequently, any cohomology theory represented by a motivic spectrum satisfies Milnor excision. We also prove Milnor excision for Ayoubs etale motives over schemes of finite virtual cohomological dimension.
Given a semisimple complex linear algebraic group $G$ and a lower ideal $I$ in positive roots of $G$, three objects arise: the ideal arrangement $mathcal{A}_I$, the regular nilpotent Hessenberg variety $mbox{Hess}(N,I)$, and the regular semisimple Hessenberg variety $mbox{Hess}(S,I)$. We show that a certain graded ring derived from the logarithmic derivation module of $mathcal{A}_I$ is isomorphic to $H^*(mbox{Hess}(N,I))$ and $H^*(mbox{Hess}(S,I))^W$, the invariants in $H^*(mbox{Hess}(S,I))$ under an action of the Weyl group $W$ of $G$. This isomorphism is shown for general Lie type, and generalizes Borels celebrated theorem showing that the coinvariant algebra of $W$ is isomorphic to the cohomology ring of the flag variety $G/B$. This surprising connection between Hessenberg varieties and hyperplane arrangements enables us to produce a number of interesting consequences. For instance, the surjectivity of the restriction map $H^*(G/B)to H^*(mbox{Hess}(N,I))$ announced by Dale Peterson and an affirmative answer to a conjecture of Sommers-Tymoczko are immediate consequences. We also give an explicit ring presentation of $H^*(mbox{Hess}(N,I))$ in types $B$, $C$, and $G$. Such a presentation was already known in type $A$ or when $mbox{Hess}(N,I)$ is the Peterson variety. Moreover, we find the volume polynomial of $mbox{Hess}(N,I)$ and see that the hard Lefschetz property and the Hodge-Riemann relations hold for $mbox{Hess}(N,I)$, despite the fact that it is a singular variety in general.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا